Serum metabolomics improves risk stratification for incident heart failure

被引:5
作者
Oexner, Rafael R. [1 ]
Ahn, Hyunchan [1 ]
Theofilatos, Konstantinos [1 ]
Shah, Ravi A. [2 ]
Schmitt, Robin [1 ]
Chowienczyk, Philip [1 ]
Zoccarato, Anna [1 ]
Shah, Ajay M. [1 ]
机构
[1] Kings Coll London, Kings Coll London British Heart Fdn Ctr Res Excell, Sch Cardiovasc & Metab Med & Sci, 125 Coldharbour Lane, London SE5 9NU, England
[2] Univ Coll London Hosp NHS Fdn Trust, Univ Coll Hosp, London, England
关键词
Heart failure; Serum metabolomics; Prevention; Screening; Biomarker; Risk prediction; PREDICTION MODELS; DISEASE; PHENYLALANINE; EPIDEMIOLOGY; PROFILE;
D O I
10.1002/ejhf.3226
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Prediction and early detection of heart failure (HF) is crucial to mitigate its impact on quality of life, survival, and healthcare expenditure. Here, we explored the predictive value of serum metabolomics (168 metabolites detected by proton nuclear magnetic resonance [1H-NMR] spectroscopy) for incident HF. Methods and results Leveraging data of 68 311 individuals and >0.8 million person-years of follow-up from the UK Biobank cohort, we (i) fitted per-metabolite Cox proportional hazards models to assess individual metabolite associations, and (ii) trained and validated elastic net models to predict incident HF using the serum metabolome. We benchmarked discriminative performance against a comprehensive, well-validated clinical risk score (Pooled Cohort Equations to Prevent HF [PCP-HF]). During a median follow-up of approximate to 12.3 years, several metabolites showed independent association with incident HF (90/168 adjusting for age and sex, 48/168 adjusting for PCP-HF). Performance-optimized risk models effectively retained key predictors representing highly correlated clusters (approximate to 80% feature reduction). Adding metabolomics to PCP-HF improved predictive performance (Harrel's C: 0.768 vs. 0.755, Delta C = 0.013, [95% confidence interval [CI] 0.004-0.022], continuous net reclassification improvement [NRI]: 0.287 [95% CI 0.200-0.367], relative integrated discrimination improvement [IDI]: 17.47% [95% CI 9.463-27.825]). Models including age, sex and metabolomics performed almost as well as PCP-HF (Harrel's C: 0.745 vs. 0.755, Delta C = 0.010 [95% CI -0.004 to 0.027], continuous NRI: 0.097 [95% CI -0.025 to 0.217], relative IDI: 13.445% [95% CI -10.608 to 41.454]). Risk and survival stratification was improved by integrating metabolomics. Conclusion Serum metabolomics improves incident HF risk prediction over PCP-HF. Scores based on age, sex and metabolomics exhibit similar predictive power to clinically-based models, potentially offering a cost-effective, standardizable, and scalable single-domain alternative.
引用
收藏
页码:829 / 840
页数:12
相关论文
共 29 条
[21]   10-Year Risk Equations for Incident Heart Failure in the General Population [J].
Khan, Sadiya S. ;
Ning, Hongyan ;
Shah, Sanjiv J. ;
Yancy, Clyde W. ;
Camethon, Mercedes ;
Berry, Jarett D. ;
Mentz, Robert J. ;
O'Brien, Emily ;
Correa, Adolfo ;
Suthahar, Navin ;
de Boer, Rudolf A. ;
Wilkins, John T. ;
Lloyd-Jones, Donald M. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (19) :2388-2397
[22]   Cardiac Energy Metabolism in Heart Failure [J].
Lopaschuk, Gary D. ;
Karwi, Qutuba G. ;
Tian, Rong ;
Wende, Adam R. ;
Abel, E. Dale .
CIRCULATION RESEARCH, 2021, 128 (10) :1487-1513
[23]  
McDonagh TA, 2021, EUR HEART J, V42, P3599, DOI [10.1093/eurheartj/ehab368, 10.1002/ejhf.2333, 10.1093/eurheartj/ehab670]
[24]   Plasma metabolites to profile pathways in noncommunicable disease multimorbidity [J].
Pietzner, Maik ;
Stewart, Isobel D. ;
Raffler, Johannes ;
Khaw, Kay-Tee ;
Michelotti, Gregory A. ;
Kastenmueller, Gabi ;
Wareham, Nicholas J. ;
Langenberg, Claudia .
NATURE MEDICINE, 2021, 27 (03) :471-+
[25]   Heart failure: preventing disease and death worldwide [J].
Ponikowski, Piotr ;
Anker, Stefan D. ;
AlHabib, Khalid F. ;
Cowie, Martin R. ;
Force, Thomas L. ;
Hu, Shengshou ;
Jaarsma, Tiny ;
Krum, Henry ;
Rastogi, Vishal ;
Rohde, Luis E. ;
Samal, Umesh C. ;
Shimokawa, Hiroaki ;
Siswanto, Bambang Budi ;
Sliwa, Karen ;
Filippatos, Gerasimos .
ESC HEART FAILURE, 2014, 1 (01) :4-25
[26]   Risk Prediction Models for Incident Heart Failure: A Systematic Review of Methodology and Model Performance [J].
Sahle, Berhe W. ;
Owen, Alice J. ;
Chin, Ken Lee ;
Reid, Christopher M. .
JOURNAL OF CARDIAC FAILURE, 2017, 23 (09) :680-687
[27]   Cost-effectiveness of a statewide public health intervention to reduce cardiovascular disease risk [J].
Smith, Lauren ;
Atherly, Adam ;
Campbell, Jon ;
Flattery, Nick ;
Coronel, Stephanie ;
Krantz, Mori .
BMC PUBLIC HEALTH, 2019, 19 (01)
[28]   Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review [J].
van Riet, Evelien E. S. ;
Hoes, Arnow. ;
Wagenaar, Kim P. ;
Limburg, Alexander ;
Landman, Marcel A. J. ;
Rutten, Frans H. .
EUROPEAN JOURNAL OF HEART FAILURE, 2016, 18 (03) :242-252
[29]   Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies [J].
Wurtz, Peter ;
Kangas, Antti J. ;
Soininen, Pasi ;
Lawlor, Debbie A. ;
Smith, George Davey ;
Ala-Korpela, Mika .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2017, 186 (09) :1084-1096