Accelerating Feedback Control for QoE Fairness in Adaptive Video Streaming over ICN

被引:1
作者
Nakagawa, Rei [1 ]
Ohzahata, Satoshi [2 ]
Yamamoto, Ryo [2 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Elect Engn & Comp Sci, Tokyo, Japan
[2] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo, Japan
来源
2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC | 2024年
关键词
ICN; Adaptive Video Streaming; QoE;
D O I
10.1109/CCNC51664.2024.10454865
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today, information centric networking enables adaptive video streaming clients to further improve QoE by applying flexible content-based control. However, an adaptive bitrate algorithm makes a client occupy the bottleneck link at excessively high bitrate, reducing the QoE fairness to other clients sharing the bottleneck link. Then, we propose fairAccel, a method of accelerating bitrate-based feedback control for achieving QoE fairness. fairAccel assigns more bandwidth to clients selecting the lower bitrate while suppressing content requests from clients selecting the highest bitrate on the bottleneck link. In addition, to further improve QoE fairness, fairAccel exploits the symmetric routing of ICN content request / response and applies bidirectional feedback control to the content request / response path. Thus, fairAccel accelerates feedback control by mitigating router queues under control of suppressing content requests before excessive traffic is delivered to the response path. Through simulation experiments, fairAccel improves the average bitrate and further improves QoE fairness for representative ABR algorithms.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 27 条
[1]  
Akhshabi Saamer., 2012, P 22 INT WORKSHOP NE, P9, DOI [DOI 10.1145/2229087.2229092, 10.1145/2229087.2229092]
[2]   Oboe: Auto-tuning Video ABR Algorithms to Network Conditions [J].
Akhtar, Zahaib ;
Nam, Yun Seong ;
Govindan, Ramesh ;
Rao, Sanjay ;
Chen, Jessica ;
Katz-Bassett, Ethan ;
Ribeiro, Bruno ;
Zhan, Jibin ;
Zhang, Hui .
PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, :44-58
[3]  
[Anonymous], 2012, 2300912012 ISOIEC
[4]   QoE Modeling for HTTP Adaptive Video Streaming-A Survey and Open Challenges [J].
Barman, Nabajeet ;
Martini, Maria G. .
IEEE ACCESS, 2019, 7 :30831-30859
[5]  
Carofiglio G, 2012, IEEE CONF COMPUT, P304, DOI 10.1109/INFCOMW.2012.6193510
[6]  
Cisco, 2017, CiscoVisualNetworking Index: Forecast and Trends, 2017-2022
[7]   Fair-RTT-DAS: A robust and efficient dynamic adaptive streaming over ICN [J].
Conti, Mauro ;
Droms, Ralph ;
Hassan, Muhammad ;
Lal, Chhagan .
COMPUTER COMMUNICATIONS, 2018, 129 :209-225
[8]  
Goto Koki, 2019, PROC IEEE INT S LOCA, P1
[9]  
itec, Mpeg-dash at itec/aau
[10]  
Jain R., 1984, A quantitative measure of fairness and discrimination for resource allocation in shared computer system