A White-Box Digital Twin for Real-Time Polarization Tracking

被引:0
作者
Zhang, Xuguang [1 ]
Pu, Guoqing [1 ]
Wu, Yong [1 ]
Hu, Weisheng [1 ]
Yi, Lilin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, State Key Lab Adv Commun Syst & Networks, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
digital twin; mueller matrices; real-time polarization tracking; MODE DISPERSION; FIBER;
D O I
10.1002/lpor.202400076
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tracking polarization in real-time is a long-term challenge. The conventional heuristic and gradient-descent-based algorithms for polarization tracking lack efficiency and interpretability. To resolve the problem, a white-box digital twin modeling the entire polarization tracking system is derived by calculating with Stokes vectors and Mueller matrices. Moreover, the real-time polarization tracking enabled by the white-box digital twin is experimentally demonstrated, which is over 7 times faster than the commonly used stochastic parallel gradient descent (SPGD) on average. The adoption of digital twin allows the algorithm to bypass the loop of perturbation, sampling, and adjusting over the real system, thereby significantly reducing the sample times and recovery time. The proposed white-box digital-twin-based algorithm has strong interpretability and high efficiency, which has substantial potential to become a standard approach to achieve real-time polarization tracking. A white-box digital twin is proposed to realize real-time polarization tracking. The digital twin derived by rigorous polarization optics calculation accurately models the real system. Digital twin bypasses the loop of perturbation, sampling, and adjusting over the real system, and requires merely 9 samples to complete one-step tracking, which is averagely over 7 times faster than conventional SPGD. image
引用
收藏
页数:8
相关论文
共 32 条
[1]   Gravitational-wave physics and astronomy in the 2020s and 2030s [J].
Bailes, M. ;
Berger, B. K. ;
Brady, P. R. ;
Branchesi, M. ;
Danzmann, K. ;
Evans, M. ;
Holley-Bockelmann, K. ;
Iyer, B. R. ;
Kajita, T. ;
Katsanevas, S. ;
Kramer, M. ;
Lazzarini, A. ;
Lehner, L. ;
Losurdo, G. ;
Luck, H. ;
McClelland, D. E. ;
McLaughlin, M. A. ;
Punturo, M. ;
Ransom, S. ;
Raychaudhury, S. ;
Reitze, D. H. ;
Ricci, F. ;
Rowan, S. ;
Saito, Y. ;
Sanders, G. H. ;
Sathyaprakash, B. S. ;
Schutz, B. F. ;
Sesana, A. ;
Shinkai, H. ;
Siemens, X. ;
Shoemaker, D. H. ;
Thorpe, J. ;
van den Brand, J. F. J. ;
Vitale, S. .
NATURE REVIEWS PHYSICS, 2021, 3 (05) :344-366
[2]   Optical coherent combining of high-power optical amplifiers for free-space optical communications [J].
Billault, Vincent ;
Leveque, Simon ;
Maho, Anaelle ;
Welch, Matthew ;
Bourderionnet, Jerome ;
Lallier, Eric ;
Sotom, Michel ;
Le Kernec, Arnaud ;
Brignon, Arnaud .
OPTICS LETTERS, 2023, 48 (14) :3649-3652
[3]   Quantum-limited optical time transfer for future geosynchronous links [J].
Caldwell, Emily D. ;
Deschenes, Jean-Daniel ;
Ellis, Jennifer ;
Swann, William C. ;
Stuhl, Benjamin K. ;
Bergeron, Hugo ;
Newbury, Nathan R. ;
Sinclair, Laura C. .
NATURE, 2023, 618 (7966) :721-+
[4]   TIME EVOLUTION OF POLARIZATION MODE DISPERSION IN LONG TERRESTRIAL LINKS [J].
DEANGELIS, C ;
GALTAROSSA, A ;
GIANELLO, G ;
MATERA, F ;
SCHIANO, M .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1992, 10 (05) :552-555
[5]  
Feng Z. Y., 2023, Laser Photonics Rev., V17
[6]   Limits and prospects for long-baseline optical fiber interferometry [J].
Hilweg, Christopher ;
Shadmany, Danial ;
Walther, Philip ;
Mavalvala, Nergis ;
Sudhir, Vivishek .
OPTICA, 2022, 9 (11) :1238-1252
[7]  
Ju P., 2023, PHOTONICS, V10, P6
[8]   Long-term measurement of PMD and polarization drift in installed fibers [J].
Karlsson, M ;
Brentel, J ;
Andrekson, PA .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000, 18 (07) :941-951
[9]   Coherent Combining for High-Power Kerr Combs [J].
Kim, Bok Young ;
Okawachi, Yoshitomo ;
Jang, Jae K. ;
Ji, Xingchen ;
Lipson, Michal ;
Gaeta, Alexander L. .
LASER & PHOTONICS REVIEWS, 2023, 17 (08)
[10]   On-Chip High-Speed Coherent Optical Signal Detection Based on Photonic Spin-Hall Effect [J].
Lei, Ting ;
Zhou, Changyu ;
Wang, Dawei ;
Xie, Zhenwei ;
Cai, Boyuan ;
Gao, Shecheng ;
Xie, Youpeng ;
Du, Luping ;
Li, Zhaohui ;
Zayats, Anatoly ;
Yuan, Xiaocong .
LASER & PHOTONICS REVIEWS, 2022, 16 (09)