Equilibrium States of Endomorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}^{k}$\end{document}: Spectral Stability and Limit Theorems

被引:0
作者
Fabrizio Bianchi [1 ]
Tien-Cuong Dinh [2 ]
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] CNRS,undefined
[3] Univ. Lille,undefined
[4] UMR 8524 - Laboratoire Paul Painlevé,undefined
[5] National University of Singapore,undefined
关键词
Equilibrium states; Transfer operator; Spectral gap; Limit theorems; 37F80; 37D35; 32U05; 32H50;
D O I
10.1007/s00039-024-00678-7
中图分类号
学科分类号
摘要
We establish the existence of a spectral gap for the transfer operator induced on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}^{k} = \mathbb{P}^{k} (\mathbb{C})$\end{document} by a generic holomorphic endomorphism and a suitable continuous weight and its perturbations on various functional spaces, which is new even in dimension one. Thanks to the spectral gap, we establish an exponential speed of convergence for the equidistribution of the backward orbits of points towards the conformal measure and the exponential mixing. Moreover, as an immediate consequence, we obtain a full list of statistical properties for the equilibrium states: CLT, Berry-Esseen Theorem, local CLT, ASIP, LIL, LDP, almost sure CLT. Many of these properties are new even in dimension one, some even in the case of zero weight function (i.e., for the measure of maximal entropy).
引用
收藏
页码:1006 / 1051
页数:45
相关论文
共 62 条
[1]  
Briend J.-Y.(2009)Deux caractérisations de la mesure d’équilibre d’un endomorphisme de Publ. Math. IHES 109 295-296
[2]  
Duval J.(2023)Equilibrium states of endomorphisms of J. Math. Pures Appl. 172 164-201
[3]  
Bianchi F.(1996) I: existence and properties Astérisque 238 1-109
[4]  
Dinh T.-C.(2007)Transformations dilatantes de l’intervalle et théorèmes limites Probab. Theory Relat. Fields 138 195-234
[5]  
Broise A.(2015)On almost-sure versions of classical limit theorems for dynamical systems J. Theor. Probab. 28 137-183
[6]  
Chazottes J.-R.(2011)Strong invariance principles with rate for “reverse” martingale differences and applications Ergod. Theory Dyn. Syst. 31 321-349
[7]  
Gouëzel S.(2020)Large deviation principles for non-uniformly hyperbolic rational maps Stoch. Dyn. 20 1095-1109
[8]  
Cuny C.(2007)Rates in almost sure invariance principle for quickly mixing dynamical systems Ergod. Theory Dyn. Syst. 27 465-488
[9]  
Merlevède F.(2010)On thermodynamics of rational maps on the Riemann sphere J. Differ. Geom. 84 255-266
[10]  
Comman H.(1996)Exponential estimates for plurisubharmonic functions Ergod. Theory Dyn. Syst. 16 613-626