A Bayesian Model Based on Local Phenotypic Resistance Data to Inform Empiric Antibiotic Escalation Decisions

被引:2
作者
Bamber, Ranjeet [1 ]
Sullivan, Brian [1 ]
Gorman, Leo [2 ]
Lee, Winnie W. Y. [3 ]
Avison, Matthew B. [3 ]
Dowsey, Andrew W. [1 ]
Williams, Philip B. [4 ,5 ]
机构
[1] Univ Bristol, Fac Hlth Sci, Bristol Med Sch, Dept Populat Hlth Sci, Bristol, England
[2] Univ Bristol, Jean Golding Inst, Bristol, England
[3] Univ Bristol, Fac Life Sci, Sch Cellular & Mol Med, Bristol, England
[4] UK Hlth Secur Agcy, Bristol, England
[5] Univ Hosp Bristol & Weston NHS Fdn Trust, Bristol Royal Infirm, Bristol, England
基金
英国医学研究理事会;
关键词
Antibiotic escalation; Empiric treatment; Escalation antibiogram; Antibiotic stewardship; THERAPY;
D O I
10.1007/s40121-024-01011-3
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
IntroductionClinicians commonly escalate empiric antibiotic therapy due to poor clinical progress without microbiology guidance. When escalating, they should take account of how resistance to an initial antibiotic affects the probability of resistance to subsequent options. The term "escalation antibiogram" (EA) has been coined to describe this concept. One difficulty when applying the EA concept to clinical practice is understanding the uncertainty in results and how this changes for specific patient subgroups.MethodsA Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative bloodstream infections based on phenotypic resistance data. The model generates a series of "credible" curves to fit the resistance data, each with the same probability of representing the true rate given the inherent uncertainty. To avoid overfitting, an integrated penalisation term adaptively smooths the curves given the level of evidence.ResultsRates of resistance to empiric first-choice and potential escalation antibiotics were calculated for the whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of specific patient groups, including ICU (intensive care unit), haematolo-oncology, and paediatric patients. The model generated an expected value (posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient subgroup. For example, the posterior means of piperacillin/tazobactam resistance rates in Gram-negative bloodstream infection are different between patients on ICU and the general hospital population: 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1) respectively. The model can also estimate the probability of inferiority between two antibiotics for a specific patient population. Differences in optimal escalation antibiotic options between specific patient groups were noted.ConclusionsEA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, providing an estimate of local resistance rates, and a comparison of antibiotic options with a measure of the uncertainty in the data. We demonstrate that EAs calculated for the whole hospital population cannot be assumed to apply to specific patient group.
引用
收藏
页码:1963 / 1981
页数:19
相关论文
共 14 条
[1]  
assets.publishing.service, ENGLISH SURVEILLANCE
[2]  
assets.publishing.service, Q LAB SURVEILLANCE A
[3]   brms: An R Package for Bayesian Multilevel Models Using Stan [J].
Buerkner, Paul-Christian .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01) :1-28
[4]   Reconciling the Potentially Irreconcilable? Genotypic and Phenotypic Amoxicillin-Clavulanate Resistance in Escherichia coli [J].
Davies, Timothy J. ;
Stoesser, Nicole ;
Sheppard, Anna E. ;
Abuoun, Manal ;
Fowler, Philip ;
Swann, Jeremy ;
Phuong Quan, T. ;
Griffiths, David ;
Vaughan, Alison ;
Morgan, Marcus ;
Phan, Hang T. T. ;
Jeffery, Katie J. ;
Andersson, Monique ;
Ellington, Matt J. ;
Ekelund, Oskar ;
Woodford, Neil ;
Mathers, Amy J. ;
Bonomo, Robert A. ;
Crook, Derrick W. ;
Peto, Tim E. A. ;
Anjum, Muna F. ;
Walker, A. Sarah .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2020, 64 (06)
[5]   Antimicrobial resistance associations with national primary care antibiotic stewardship policy: Primary care-based, multilevel analytic study [J].
Hammond, Ashley ;
Stuijfzand, Bobby ;
Avison, Matthew B. ;
Hay, Alastair D. .
PLOS ONE, 2020, 15 (05)
[6]   Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J].
Murray, Christopher J. L. ;
Ikuta, Kevin Shunji ;
Sharara, Fablina ;
Swetschinski, Lucien ;
Aguilar, Gisela Robles ;
Gray, Authia ;
Han, Chieh ;
Bisignano, Catherine ;
Rao, Puja ;
Wool, Eve ;
Johnson, Sarah C. ;
Browne, Annie J. ;
Chipeta, Michael Give ;
Fell, Frederick ;
Hackett, Sean ;
Haines-Woodhouse, Georgina ;
Hamadani, Bahar H. Kashef ;
Kumaran, Emmanuelle A. P. ;
McManigal, Barney ;
Agarwal, Ramesh ;
Akech, Samuel ;
Albertson, Samuel ;
Amuasi, John ;
Andrews, Jason ;
Aravkin, Aleskandr ;
Ashley, Elizabeth ;
Bailey, Freddie ;
Baker, Stephen ;
Basnyat, Buddha ;
Bekker, Adrie ;
Bender, Rose ;
Bethou, Adhisivam ;
Bielicki, Julia ;
Boonkasidecha, Suppawat ;
Bukosia, James ;
Carvalheiro, Cristina ;
Castaneda-Orjuela, Carlos ;
Chansamouth, Vilada ;
Chaurasia, Suman ;
Chiurchiu, Sara ;
Chowdhury, Fazle ;
Cook, Aislinn J. ;
Cooper, Ben ;
Cressey, Tim R. ;
Criollo-Mora, Elia ;
Cunningham, Matthew ;
Darboe, Saffiatou ;
Day, Nicholas P. J. ;
De Luca, Maia ;
Dokova, Klara .
LANCET, 2022, 399 (10325) :629-655
[7]   Current approaches to the diagnosis of bacterial and fungal bloodstream infections in the intensive care unit [J].
Murray, Patrick R. ;
Masur, Henry .
CRITICAL CARE MEDICINE, 2012, 40 (12) :3277-3282
[8]   β lactam monotherapy versus β lactam-aminoglycoside combination therapy for fever with neutropenia:: systematic review and meta-analysis [J].
Paul, M ;
Soares-Weiser, K ;
Leibovici, L .
BRITISH MEDICAL JOURNAL, 2003, 326 (7399) :1111-1115
[9]   Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study [J].
Scheer, C. S. ;
Fuchs, C. ;
Gruendling, M. ;
Vollmer, M. ;
Bast, J. ;
Bohnert, J. A. ;
Zimmermann, K. ;
Hahnenkamp, K. ;
Rehberg, S. ;
Kuhn, S-O .
CLINICAL MICROBIOLOGY AND INFECTION, 2019, 25 (03) :326-331
[10]  
Stan platform for Bayesian inference with Hamiltonian Monte-Carlo sampling. Stan Development Team, 2022, STAN MODELING LANGUA