Revisit PCA-based technique for Out-of-Distribution Detection

被引:1
|
作者
Guan, Xiaoyuan [1 ,3 ]
Liu, Zhouwu [1 ,3 ]
Zheng, Wei-Shi [1 ,3 ]
Zhou, Yuren [1 ]
Wang, Ruixuan [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] MOE, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV51070.2023.01780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out-of-distribution (OOD) detection is a desired ability to ensure the reliability and safety of intelligent systems. A scoring function is often designed to measure the degree of any new data being an OOD sample. While most designed scoring functions are based on a single source of information (e.g., the classifier's output, logits, or feature vector), recent studies demonstrate that fusion of multiple sources may help better detect OOD data. In this study, after detailed analysis of the issue in OOD detection by the conventional principal component analysis (PCA), we propose fusing a simple regularized PCA-based reconstruction error with other source of scoring function to further improve OOD detection performance. In particular, when combined with a strong energy score-based OOD method, the regularized reconstruction error helps achieve new state-of-the-art OOD detection results on multiple standard benchmarks. The code is available at https://github.com/SYSU-MIA-GROUP/pca-based-out-of-distribution-detection.
引用
收藏
页码:19374 / 19382
页数:9
相关论文
共 50 条
  • [41] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [42] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [43] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [44] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [45] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [46] Leveraging Visual Attention for out-of-distribution Detection
    Cultrera, Luca
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4449 - 4458
  • [47] A Simple Framework for Robust Out-of-Distribution Detection
    Hur, Youngbum
    Yang, Eunho
    Hwang, Sung Ju
    IEEE ACCESS, 2022, 10 : 23086 - 23097
  • [48] A Critical Analysis of Document Out-of-Distribution Detection
    Gu, Jiuxiang
    Ming, Yifei
    Zhou, Yi
    Kuen, Jason
    Morariu, Vlad I.
    Zhao, Handong
    Zhang, Ruiyi
    Barmpalios, Nikolaos
    Liu, Anqi
    Li, Yixuan
    Sun, Tong
    Nenkova, Ani
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 4973 - 4999
  • [49] Weighted Mutual Information for Out-Of-Distribution Detection
    De Bernardi, Giacomo
    Narteni, Sara
    Cambiaso, Enrico
    Muselli, Marco
    Mongelli, Maurizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 318 - 331
  • [50] An Information Theoretical View for Out-of-Distribution Detection
    Hu, Jinjing
    Liu, Wenrui
    Chang, Hong
    Mai, Bingpeng
    Shan, Shiguang
    Chen, Xilin
    COMPUTER VISION - ECCV 2024, PT LV, 2025, 15113 : 418 - 435