Revisit PCA-based technique for Out-of-Distribution Detection

被引:1
|
作者
Guan, Xiaoyuan [1 ,3 ]
Liu, Zhouwu [1 ,3 ]
Zheng, Wei-Shi [1 ,3 ]
Zhou, Yuren [1 ]
Wang, Ruixuan [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] MOE, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV51070.2023.01780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out-of-distribution (OOD) detection is a desired ability to ensure the reliability and safety of intelligent systems. A scoring function is often designed to measure the degree of any new data being an OOD sample. While most designed scoring functions are based on a single source of information (e.g., the classifier's output, logits, or feature vector), recent studies demonstrate that fusion of multiple sources may help better detect OOD data. In this study, after detailed analysis of the issue in OOD detection by the conventional principal component analysis (PCA), we propose fusing a simple regularized PCA-based reconstruction error with other source of scoring function to further improve OOD detection performance. In particular, when combined with a strong energy score-based OOD method, the regularized reconstruction error helps achieve new state-of-the-art OOD detection results on multiple standard benchmarks. The code is available at https://github.com/SYSU-MIA-GROUP/pca-based-out-of-distribution-detection.
引用
收藏
页码:19374 / 19382
页数:9
相关论文
共 50 条
  • [21] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [22] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [23] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [24] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [25] Inductive Conformal Out-of-distribution Detection based on Adversarial Autoencoders
    Cai, Feiyang
    Ozdagli, Ali, I
    Potteiger, Nicholas
    Koutsoukos, Xenofon
    2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021), 2021, : 90 - 95
  • [26] Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection
    Zhou, Yibo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7369 - 7377
  • [27] Unsupervised Out-of-Distribution Object Detection via PCA-Driven Dynamic Prototype Enhancement
    Wu, Aming
    Deng, Cheng
    Liu, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2431 - 2446
  • [28] Out-of-Distribution (OOD) Detection Based on Deep Learning: A Review
    Cui, Peng
    Wang, Jinjia
    ELECTRONICS, 2022, 11 (21)
  • [29] PCA-Based Network Traffic Anomaly Detection
    Ding, Meimei
    Tian, Hui
    TSINGHUA SCIENCE AND TECHNOLOGY, 2016, 21 (05) : 500 - 509
  • [30] Trustworthy diagnosis of Electrocardiography signals based on out-of-distribution detection
    Yu, Bowen
    Liu, Yuhong
    Wu, Xin
    Ren, Jing
    Zhao, Zhibin
    PLOS ONE, 2025, 20 (02):