Effect of the properties of chalcopyrite semiconductors on the physical and optical parameters of cell layers with cigs

被引:0
作者
Rachedi M. [1 ]
Merad A. [2 ]
Lorenzini G. [3 ]
Ahmad H. [4 ]
Menni Y. [1 ]
Ameur H. [5 ]
Sifi I. [1 ]
机构
[1] Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bekr Belkaid University, P.O. Box 119, Tlemcen
[2] Solid State Physics Team, Theoretical Physics Laboratory, Faculty of Sciences, University of Tlemcen, B.P. 119, Tlemcen
[3] Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, Parma
[4] Department of Basic Science, University of Engineering and Technology, Peshawar
[5] Department of Technology, University Centre of Naama, P.O. Box 66, Naama
来源
Revue des Composites et des Materiaux Avances | 2021年 / 31卷 / 02期
关键词
Cell layers with CIGS; Chalcopyrite semiconductors; Conversion efficiency; CuInGaSe2 solar cells; Solar materials;
D O I
10.18280/RCMA.310201
中图分类号
学科分类号
摘要
In this paper, the impact of various buffers of applying components on the effectiveness of CuInGaSe2 solar cells is studied numerically. The SCAPS software is employed to achieve the investigation. The main parameters of the inspected devices are: The photovoltaic conversion effectiveness (η), the filling factor (FF), short-circuit current (Jsc), and open circuit voltage (Voc). These photovoltaic parameters are analyzed vs. the thickness in the various buffer layers under study. The numerical findings revealed that the most significant conversion effectiveness (23.4%) of the CIGS solar cell is obtained with the CdS buffer layer. An attempt is conducted to improve this efficiency by using the SCAPS and by optimizing the two electrical and technological parameters of the three layers (ZnO, CdS, CIGS). © 2021 Lavoisier. All rights reserved.
引用
收藏
页码:65 / 72
页数:7
相关论文
共 35 条
[1]  
Saidi H., Alaya C.B., Boujmil M.F., Durand B., Lazzari J.L., Bouaicha M., Physical propertiesof electrodeposited CIGS films on crystalline silicon:Application for photovoltaic hetero-junction, CurrentApplied Physics, 20, 1, pp. 29-36, (2020)
[2]  
Hadjab M., Ibrir M., Berrah S., Abid H., Saeed M.A., Structural, electronic and optical properties forchalcopyrite semiconducting materials: Ab-initio computational study, Optik, 169, pp. 69-76, (2018)
[3]  
Madhuri K., Kannan P.K., Chaudhari S., Dhage S.R., Dey S.R., Effect of annealing time and heat fluxon solvothermal synthesis of CIGS nanoparticles, Materials Today: Proceedings, 21, pp. 1882-1887, (2020)
[4]  
Mandati S., Sarada B.V., Electrodepositedchalcopyrite CuInGaSe2 absorbers for solar energyharvesting, Materials Science for Energy Technologies, 3, pp. 440-445, (2020)
[5]  
Ramasamy M., Jung C.Y., Yeon Y.B., Lee C.W., Electrochemical Atomic Layer Deposition ofCuIn (1-x) GaxSe2 on Mo Substrate, Journal of TheElectrochemical Society, 164, 14, (2017)
[6]  
Kotbi A., Hartiti B., Fadili S., Labrim H., Ridah A., Thevenin P., Synthesis and characterization ofsprayed CIGS thin films for photovoltaic application, Materials Today: Proceedings, 24, pp. 66-70, (2020)
[7]  
Sheu H.H., Hsu Y.T., Jian S.Y., Liang S.C., The effect of Cu concentration in the photovoltaicefficiency of CIGS solar cells prepared by co-evaporation technique, Vacuum, 131, pp. 278-284, (2016)
[8]  
Jager-Waldau A., Progress in chalcopyritecompound semiconductor research for photovoltaicapplications and transfer of results into actual solar cellproduction, Practical Handbook of Photovoltaics, pp. 373-395, (2012)
[9]  
Tai K.F., Kamada R., Yagioka T., Kato T., Sugimoto H., From 20.9 to 22.3% Cu (In, Ga)(S, Se)2 solarcell: Reduced recombination rate at the heterojunctionand the depletion region due to K-treatment, JapaneseJournal of Applied Physics, 56, (2017)
[10]  
Kovacic M., Krc J., Lipovsek B., Chen W.C., Edoff M., Bolt P. J., Topic M., Light managementdesign in ultra-thin chalcopyrite photovoltaic devices byemploying optical modelling, Solar Energy Materialsand Solar Cells, 200, (2019)