Single-cell analysis of chromatin and expression reveals age- and sex-associated alterations in the human heart

被引:3
作者
Read, David F. [1 ]
Booth, Gregory T. [1 ]
Daza, Riza M. [1 ]
Jackson, Dana L. [1 ]
Gladden, Rula Green [1 ]
Srivatsan, Sanjay R. [1 ]
Ewing, Brent [1 ]
Franks, Jennifer M. [1 ]
Spurrell, Cailyn H. [2 ]
Gomes, Anne Roshella [2 ]
O'Day, Diana [2 ]
Gogate, Aishwarya A. [2 ,3 ]
Martin, Beth K. [1 ]
Larson, Haleigh [2 ]
Pfleger, Christian [4 ]
Starita, Lea [1 ,2 ]
Lin, Yiing [5 ]
Shendure, Jay [2 ,3 ,6 ,7 ]
Lin, Shin [4 ]
Trapnell, Cole [2 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA USA
[2] Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[3] Seattle Childrens Res Inst, Seattle, WA 98101 USA
[4] Univ Washington, Sch Med, Div Cardiol, Seattle, WA 98195 USA
[5] Washington Univ, Dept Surg, St Louis, MO USA
[6] Howard Hughes Med Inst, Seattle, WA 98195 USA
[7] Allen Discovery Ctr Cell Lineage Tracing, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
DATABASE; ATLAS;
D O I
10.1038/s42003-024-06582-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors. We identify hundreds of differentially expressed genes by age and sex and find epigenetic signatures of variation in ATAC-Seq data in this discovery cohort. We then scale up our single-cell RNA-Seq analysis by combining our data with five recently published single nucleus RNA-Seq datasets of healthy adult hearts. We find variation such as metabolic alterations by sex and immune changes by age in differential expression tests, as well as alterations in abundance of cardiomyocytes by sex and neurons with age. In addition, we compare our adult-derived ATAC-Seq profiles to analogous fetal cell types to identify putative developmental-stage-specific regulatory factors. Finally, we train predictive models of cell-type-specific RNA expression levels utilizing ATAC-Seq profiles to link distal regulatory sequences to promoters, quantifying the predictive value of a simple TF-to-expression regulatory grammar and identifying cell-type-specific TFs. Our analysis represents the largest single-cell analysis of cardiac variation by age and sex to date and provides a resource for further study of healthy cardiac variation and transcriptional regulation at single-cell resolution. Analysis of single-nucleus RNA- and ATAC-Seq from healthy human heart revealed age- and sex-specific alterations, defines candidate developmental stage-specific regulatory patterns, and identifies cell type-specific regulatory signatures.
引用
收藏
页数:14
相关论文
共 96 条
[1]   Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks [J].
Agarwal, Vikram ;
Shendure, Jay .
CELL REPORTS, 2020, 31 (07)
[2]   A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers [J].
Akerberg, Brynn N. ;
Gu, Fei ;
VanDusen, Nathan J. ;
Zhang, Xiaoran ;
Dong, Rui ;
Li, Kai ;
Zhang, Bing ;
Zhou, Bin ;
Sethi, Isha ;
Ma, Qing ;
Wasson, Lauren ;
Wen, Tong ;
Liu, Jinhua ;
Dong, Kunzhe ;
Conlon, Frank L. ;
Zhou, Jiliang ;
Yuan, Guo-Cheng ;
Zhou, Pingzhu ;
Pu, William T. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   A transcriptional switch governs fibroblast activation in heart disease [J].
Alexanian, Michael ;
Przytycki, Pawel F. ;
Micheletti, Rudi ;
Padmanabhan, Arun ;
Ye, Lin ;
Travers, Joshua G. ;
Gonzalez-Teran, Barbara ;
Silva, Ana Catarina ;
Duan, Qiming ;
Ranade, Sanjeev S. ;
Felix, Franco ;
Linares-Saldana, Ricardo ;
Li, Li ;
Lee, Clara Youngna ;
Sadagopan, Nandhini ;
Pelonero, Angelo ;
Huang, Yu ;
Andreoletti, Gaia ;
Jain, Rajan ;
McKinsey, Timothy A. ;
Rosenfeld, Michael G. ;
Gifford, Casey A. ;
Pollard, Katherine S. ;
Haldar, Saptarsi M. ;
Srivastava, Deepak .
NATURE, 2021, 595 (7867) :438-+
[4]  
[Anonymous], 2022, Linear mixed-effects models using "Eigen"and S4 R package lme4 version 1.1-28
[5]  
Artyomov M. N., 2021, bioRxiv, DOI DOI 10.1101/060012
[6]   Effective gene expression prediction from sequence by integrating long-range interactions [J].
Avsec, Ziga ;
Agarwal, Vikram ;
Visentin, Daniel ;
Ledsam, Joseph R. ;
Grabska-Barwinska, Agnieszka ;
Taylor, Kyle R. ;
Assael, Yannis ;
Jumper, John ;
Kohli, Pushmeet ;
Kelley, David R. .
NATURE METHODS, 2021, 18 (10) :1196-+
[7]  
Aykaç A, 2020, CLIN PSYCHOPHARM NEU, V18, P174
[8]   Transforming Growth Factor-β Signaling in Immunity and Cancer [J].
Batlle, Eduard ;
Massague, Joan .
IMMUNITY, 2019, 50 (04) :924-940
[9]   Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection Fraction [J].
Beale, Anna L. ;
Meyer, Philippe ;
Marwick, Thomas H. ;
Lam, Carolyn S. P. ;
Kaye, David M. .
CIRCULATION, 2018, 138 (02) :198-205
[10]   Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex [J].
Bedogni, Francesco ;
Hodge, Rebecca D. ;
Elsen, Gina E. ;
Nelson, Branden R. ;
Daza, Ray A. M. ;
Beyer, Richard P. ;
Bammler, Theo K. ;
Rubenstein, John L. R. ;
Hevner, Robert F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (29) :13129-13134