Integrated metabolomic and transcriptomic analysis reveals the regulatory mechanisms of flavonoid and alkaloid biosynthesis in the new and old leaves of Murraya tetramera Huang

被引:1
|
作者
Zhou, Tao [1 ]
Xing, Qinqin [1 ]
Bu, Jiahao [1 ]
Han, Wenjun [1 ]
Shen, Zhiguo [2 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Life Sci & Technol, 498 South Shaoshan Rd, Changsha 410004, Hunan, Peoples R China
[2] Henan Acad Forestry, Zhengzhou 450008, Henan, Peoples R China
来源
BMC PLANT BIOLOGY | 2024年 / 24卷 / 01期
关键词
M; Tetramera; Flavonoids; Alkaloids; Metabolome and transcriptome; ACCUMULATION;
D O I
10.1186/s12870-024-05066-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Murraya tetramera Huang is a traditional Chinese woody medicine. Its leaves contain flavonoids, alkaloids, and other active compounds, which have anti-inflammatory and analgesic effects, as well as hypoglycemic and lipid-lowering effects, and anti-tumor effects. There are significant differences in the content of flavonoids and alkaloids in leaves during different growth cycles, but the synthesis mechanism is still unclear. Results In April 2021, new leaves (one month old) and old leaves (one and a half years old) of M. tetramera were used as experimental materials to systematically analyze the changes in differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) with transcriptomics and metabolomics technology. This was done to identify the signaling pathways of flavonoid and alkaloid synthesis. The results showed that the contents of total alkaloids and flavonoids in old leaves were significantly higher than those in new leaves. Thirteen flavonoid compounds, three isoflavone compounds, and nineteen alkaloid compounds were identified, and 125 and 48 DEGs related to flavonoid and alkaloid synthesis were found, respectively. By constructing the KEGG (Kyoto Encyclopedia of Genes and Genomes) network of DEGs and DAMs, it was shown that the molecular mechanism of flavonoid biosynthesis in M. tetramera mainly focuses on the "flavonoid biosynthetic pathway" and the "flavonoid and flavonol biosynthetic pathway". Among them, p-Coumaryl alcohol, Sinapyl alcohol, Phloretin, and Isoquercitrin were significantly accumulated in old leaves, the up-regulated expression of CCR (cinnamoyl-CoA reductase) might promote the accumulation of p-Coumaryl alcohol, upregulation of F5H (ferulate-5-hydroxylase) might promote Sinapyl alcohol accumulation. Alkaloids, including indole alkaloids, pyridine alkaloids, imidazole alkaloids, and quinoline alkaloids, were significantly accumulated in old leaves, and a total of 29 genes were associated with these substances. Conclusions These data are helpful to better understand the biosynthesis of flavonoids and alkaloids in M. tetramera and provide a scientific basis for the development of medicinal components in M. tetramera.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Integrated Transcriptomic and Targeted Metabolomic Analysis Reveals the Key Genes Involved in Triterpenoid Biosynthesis of Ganoderma lucidum
    Xu, Xiaolan
    Li, Chunxia
    Wu, Fangjing
    Zhao, Shuangshuang
    Chen, Tiqiang
    You, Haihong
    Lin, Yijie
    Zou, Xiaoxing
    JOURNAL OF FUNGI, 2025, 11 (01)
  • [22] Integrated metabolomic and transcriptomic analyses reveal anthocyanin biosynthesis mechanisms and the regulatory role of LjAN2 in Lonicera japonica
    Tan, Zhengwei
    Lu, Dandan
    Li, Lei
    Yu, Yongliang
    Su, Xiaoyu
    Sun, Yao
    Cao, Yiwen
    Li, Chunming
    Dong, Wei
    Yang, Hongqi
    Yang, Qing
    An, Sufang
    Liang, Huizhen
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 223
  • [23] Integrated Transcriptomic and Metabolomic Analysis Reveals Tissue-Specific Flavonoid Biosynthesis and MYB-Mediated Regulation of UGT71A1 in Panax quinquefolius
    Wang, Yumeng
    Zhang, Jiaxin
    Wang, Ping
    Li, Yongkang
    Wang, Yihan
    Yan, Yan
    Chi, Junwen
    Chen, Jiankang
    Lian, Junmei
    Piao, Xiangmin
    Lei, Xiujuan
    Xiao, Ying
    Murray, Jeremy
    Deyholos, Micheal K.
    Wang, Yingping
    Di, Peng
    Zhang, Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (06)
  • [24] Integrated metabolomic and transcriptomic analysis reveals the effects and mechanisms of Jinqi Jiangtang tablets on type 2 diabetes
    Song, Zhihui
    Yan, An
    Li, Zhenzhen
    Shang, Ye
    Chen, Rui
    Yang, Zhihua
    Guo, Zehui
    Zhang, Yuhang
    Wen, Tao
    Ogaji, Omachi Daniel
    Wang, Yi
    PHYTOMEDICINE, 2024, 134
  • [25] Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass
    Cao, Yan-Hua
    Lu, Zhao-Long
    Li, Yuan-Hong
    Jiang, Yiwei
    Zhang, Jin-Lin
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [26] Integrated metabolomic and transcriptomic analysis of the anthocyanin and proanthocyanidin regulatory networks in red walnut natural hybrid progeny leaves
    Wang, Lei
    Li, Lin
    Zhao, Wei
    Fan, Lu
    Meng, Haijun
    Zhang, Ganggang
    Wu, Wenjiang
    Shi, Jiangli
    Wu, Guoliang
    PEERJ, 2022, 10
  • [27] Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress
    Jia, Chunping
    Guo, Bin
    Wang, Baike
    Li, Xin
    Yang, Tao
    Li, Ning
    Wang, Juan
    Yu, Qinghui
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [28] Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
    Wang, Yubin
    Liu, Wei
    Li, Wei
    Wang, Caijie
    Dai, Haiying
    Xu, Ran
    Zhang, Yanwei
    Zhang, Lifeng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [29] Combined full-length transcriptomic and metabolomic analysis reveals the regulatory mechanisms of adaptation to salt stress in asparagus
    Zhang, Xuhong
    Han, Changzhi
    Liang, Yuqin
    Yang, Yang
    Liu, Yun
    Cao, Yanpo
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [30] Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Flavonoid Accumulation and Its Underlying Mechanism in Fruits of Distinct Canarium album Cultivars
    Lai, Ruilian
    Shen, Chaogui
    Feng, Xin
    Gao, Minxia
    Zhang, Yongyan
    Wei, Xiaoxia
    Chen, Yiting
    Cheng, Chunzhen
    Wu, Rujian
    FOODS, 2022, 11 (16)