Improving physiological simulations in seasonally dry tropical forests with limited measurements

被引:0
作者
Alvarenga e Silva, Iago [1 ,2 ]
Rodriguez, Daniel Andres [1 ]
Espindola, Rogerio Pinto [1 ]
机构
[1] Univ Fed Rio de Janeiro, Alberto Luiz Coimbra Inst Grad Studies & Res Engn, Ave Horacio Macedo 2030,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
[2] FUNCEME, Ceara Inst Meteorol & Water Resources, Ave Rui Barbosa 1246, Fortaleza 60001, Ceara, Brazil
关键词
LAND-SURFACE MODEL; NOAH-MP; PARAMETER SENSITIVITY; PLANT DIVERSITY; CLIMATE; VEGETATION; CAATINGA; WATER; CONSERVATION; EVOLUTION;
D O I
10.1007/s00704-024-05050-1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Semiarid regions and seasonally dry tropical forests play a critical role in global carbon exchange. In the Southern Hemisphere, these areas can contribute over 80% of positive global carbon storage in wet years due to their sensitivity to precipitation. It is therefore vital that climate models accurately represent land surface processes in these regions, including the contribution of vegetation seasonality to the water budget and carbon cycle. However, the simulation of phenological processes introduces new uncertainties associated with vegetation parameters, especially in biomes with a lack of field experiments, such as the Caatinga biome, a seasonally dry tropical forest. Furthermore, the global land cover maps used in land surface models and their associated parameters do not accurately reflect the diversity of vegetation in these regions. In this study, we improved the Noah-MP leaf area index simulation through parameter calibration and sensitivity analysis for the Caatinga biome in Brazilian semiarid region. To assess parameter uncertainty, we applied the generalized likelihood uncertainty estimation (GLUE) method with MODIS LAI as reference data. The best-performing models from GLUE improve the LAI simulation for BSA natural vegetation. The results indicated that the most sensitive parameters in LAI simulation are the field capacity, the specific leaf area index, and the leaf turnover rate. These parameters regulate water stress, conversion from leaf mass to LAI, and leaf carbon allocation to leaves. Additionally, it was observed that some vegetation parameters exhibit seasonal behavior, suggesting that allowing parameters to vary within the year could enhance the simulations.
引用
收藏
页码:7133 / 7146
页数:14
相关论文
共 97 条
  • [51] Simulating Rainfall Interception by Caatinga Vegetation Using the Gash Model Parametrized on Daily and Seasonal Bases
    Lopes, Daniela C.
    Steidle Neto, Antonio Jose
    Silva, Thieres G. F.
    Souza, Luciana S. B.
    Zolnier, Sergio
    Souza, Carlos A. A.
    [J]. WATER, 2021, 13 (18)
  • [52] An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface model (CABLE)
    Lu, Xingjie
    Wang, Ying-Ping
    Ziehn, Tilo
    Dai, Yongjiu
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2013, 182 : 292 - 303
  • [53] Maximum Carboxylation Rate Estimation With Chlorophyll Content as a Proxy of Rubisco Content
    Lu, Xuehe
    Ju, Weimin
    Li, Jing
    Croft, Holly
    Chen, Jing M.
    Luo, Yiqi
    Yu, Hua
    Hu, Haijing
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (08)
  • [54] Interplay of environmental cues and wood density in the vegetative and reproductive phenology of seasonally dry tropical forest trees
    Luna-Nieves, Adriana L.
    Gonzalez, Edgar J.
    Cortes-Flores, Jorge
    Ibarra-Manriquez, Guillermo
    Maldonado-Romo, Axel
    Meave, Jorge A.
    [J]. BIOTROPICA, 2022, 54 (02) : 500 - 514
  • [55] A Systematic Evaluation of Noah-MP in Simulating Land-Atmosphere Energy, Water, and Carbon Exchanges Over the Continental United States
    Ma, Ning
    Niu, Guo-Yue
    Xia, Youlong
    Cai, Xitian
    Zhang, Yinsheng
    Ma, Yaoming
    Fang, Yuanhao
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (22) : 12245 - 12268
  • [56] Marengo Jose A., 2022, Climate Resilience and Sustainability, V1, DOI 10.1002/cli2.17
  • [57] Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid
    Marques, Thiago, V
    Mendes, Keila
    Mutti, Pedro
    Medeiros, Salomao
    Silva, Lindenberg
    Perez-Marin, Aldrin M.
    Campos, Suany
    Lucio, Paulo S.
    Lima, Kellen
    dos Reis, Jean
    Ramos, Tarsila M.
    da Silva, Daniel F.
    Oliveira, Cristiano P.
    Costa, Gabriel B.
    Antonino, Antonio C. D.
    Menezes, Romulo S. C.
    Santos e Silva, Claudio M.
    Bezerra, Bergson
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2020, 287
  • [58] A COMPARISON OF THREE METHODS FOR SELECTING VALUES OF INPUT VARIABLES IN THE ANALYSIS OF OUTPUT FROM A COMPUTER CODE
    MCKAY, MD
    BECKMAN, RJ
    CONOVER, WJ
    [J]. TECHNOMETRICS, 1979, 21 (02) : 239 - 245
  • [59] Remote Sensing Phenology of the Brazilian Caatinga and Its Environmental Drivers
    Medeiros, Rodolpho
    Andrade, Joao
    Ramos, Desiree
    Moura, Magna
    Perez-Marin, Aldrin Martin
    dos Santos, Carlos A. C.
    da Silva, Bernardo Barbosa
    Cunha, John
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [60] Interannual Variability of Energy and CO2 Exchanges in a Remnant Area of the Caatinga Biome under Extreme Rainfall Conditions
    Mendes, Keila R.
    Marques, Ana M. S.
    Mutti, Pedro R.
    Oliveira, Pablo E. S.
    Rodrigues, Daniele T.
    Costa, Gabriel B.
    Ferreira, Rosaria R.
    da Silva, Any C. N.
    Morais, Leonardo F.
    Lima, Jose Romualdo S.
    Antonino, Antonio C. D.
    Menezes, Romulo S. C.
    Santos e Silva, Claudio M.
    Bezerra, Bergson G.
    [J]. SUSTAINABILITY, 2023, 15 (13)