Improving physiological simulations in seasonally dry tropical forests with limited measurements

被引:0
作者
Alvarenga e Silva, Iago [1 ,2 ]
Rodriguez, Daniel Andres [1 ]
Espindola, Rogerio Pinto [1 ]
机构
[1] Univ Fed Rio de Janeiro, Alberto Luiz Coimbra Inst Grad Studies & Res Engn, Ave Horacio Macedo 2030,Cidade Univ, BR-21941972 Rio De Janeiro, Brazil
[2] FUNCEME, Ceara Inst Meteorol & Water Resources, Ave Rui Barbosa 1246, Fortaleza 60001, Ceara, Brazil
关键词
LAND-SURFACE MODEL; NOAH-MP; PARAMETER SENSITIVITY; PLANT DIVERSITY; CLIMATE; VEGETATION; CAATINGA; WATER; CONSERVATION; EVOLUTION;
D O I
10.1007/s00704-024-05050-1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Semiarid regions and seasonally dry tropical forests play a critical role in global carbon exchange. In the Southern Hemisphere, these areas can contribute over 80% of positive global carbon storage in wet years due to their sensitivity to precipitation. It is therefore vital that climate models accurately represent land surface processes in these regions, including the contribution of vegetation seasonality to the water budget and carbon cycle. However, the simulation of phenological processes introduces new uncertainties associated with vegetation parameters, especially in biomes with a lack of field experiments, such as the Caatinga biome, a seasonally dry tropical forest. Furthermore, the global land cover maps used in land surface models and their associated parameters do not accurately reflect the diversity of vegetation in these regions. In this study, we improved the Noah-MP leaf area index simulation through parameter calibration and sensitivity analysis for the Caatinga biome in Brazilian semiarid region. To assess parameter uncertainty, we applied the generalized likelihood uncertainty estimation (GLUE) method with MODIS LAI as reference data. The best-performing models from GLUE improve the LAI simulation for BSA natural vegetation. The results indicated that the most sensitive parameters in LAI simulation are the field capacity, the specific leaf area index, and the leaf turnover rate. These parameters regulate water stress, conversion from leaf mass to LAI, and leaf carbon allocation to leaves. Additionally, it was observed that some vegetation parameters exhibit seasonal behavior, suggesting that allowing parameters to vary within the year could enhance the simulations.
引用
收藏
页码:7133 / 7146
页数:14
相关论文
共 97 条
  • [11] Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin
    Cai, Xitian
    Yang, Zong-Liang
    David, Cedric H.
    Niu, Guo-Yue
    Rodell, Matthew
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (01) : 23 - 38
  • [12] Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest
    Campos, Suany
    Mendes, Keila R.
    da Silva, Lindenberg L.
    Mutti, Pedro R.
    Medeiros, Salomao S.
    Amorim, Laerte B.
    dos Santos, Carlos A. C.
    Perez-Marin, Aldrin M.
    Ramos, Tarsila M.
    Marques, Thiago, V
    Lucio, Paulo S.
    Costa, Gabriel B.
    Santos e Silva, Claudio M.
    Bezerra, Bergson G.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2019, 271 : 398 - 412
  • [13] An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China
    Chang, Ming
    Liao, Wenhui
    Wang, Xuemei
    Zhang, Qi
    Chen, Weihua
    Wu, Zhiyong
    Hu, Zechao
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2020, 281
  • [14] WUE and CO2 Estimations by Eddy Covariance and Remote Sensing in Different Tropical Biomes
    Costa, Gabriel B.
    Santos E Silva, Claudio M.
    Mendes, Keila R.
    dos Santos, Jose G. M.
    Neves, Theomar T. A. T.
    Silva, Alex S.
    Rodrigues, Thiago R.
    Silva, Jonh B.
    Dalmagro, Higo J.
    Mutti, Pedro R.
    Nunes, Hildo G. G. C.
    Peres, Lucas, V
    Santana, Raoni A. S.
    Viana, Losany B.
    Almeida, Gabriele, V
    Bezerra, Bergson G.
    Marques, Thiago, V
    Ferreira, Rosaria R.
    Oliveira, Cristiano P.
    Goncalves, Weber A.
    Campos, Suany
    Andrade, Maria U. G.
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [15] Water storage of a typical tree species in the Caatinga biome (Caesalpinia pyramidalis Tul.)
    Costa, Juliana Alcantara
    Vellame, Lucas Melo
    Costa, Carlos Alexandre Gomes
    Navarro-Hevia, Joaquin
    de Lacerda, Claudivan Feitosa
    de Figueiredo, Jose Vidal
    de Araujo, Jose Carlos
    [J]. HYDROLOGICAL PROCESSES, 2023, 37 (08)
  • [16] The impact of new land surface physics on the GCM simulation of climate and climate sensitivity
    Cox, PM
    Betts, RA
    Bunton, CB
    Essery, RLH
    Rowntree, PR
    Smith, J
    [J]. CLIMATE DYNAMICS, 1999, 15 (03) : 183 - 203
  • [17] Evaluating the temporal patterns of land use and precipitation under desertification in the semi-arid region of Brazil
    da Silva, Bruno Fonseca
    Rodrigues, Rodrigo Zimmerle dos Santos
    Heiskanen, Janne
    Abera, Temesgen Alemayehu
    Gasparetto, Suelen Cristina
    Biase, Adriele Giaretta
    Ballester, Maria Victoria Ramos
    de Moura, Yhasmin Mendes
    Piedade, Sonia Maria de Stefano
    Silva, Andrezza Karla de Oliveira
    de Camargo, Plinio Barbosa
    [J]. ECOLOGICAL INFORMATICS, 2023, 77
  • [18] Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil
    da Silva, Paulo Ferreira
    de Sousa Lima, Jose Romualdo
    Dantas Antonino, Antonio Celso
    Souza, Rodolfo
    de Souza, Eduardo Soares
    Inacio Silva, Jose Raliuson
    Alves, Edevaldo Miguel
    [J]. JOURNAL OF ARID ENVIRONMENTS, 2017, 147 : 71 - 82
  • [19] Spatiotemporal Analysis of Rainfall and Droughts in a Semiarid Basin of Brazil: Land Use and Land Cover Dynamics
    de Barros de Sousa, Lizandra
    de Assuncao Montenegro, Abelardo Antonio
    da Silva, Marcos Vinicius
    Almeida, Thayna Alice Brito
    de Carvalho, Ailton Alves
    da Silva, Thieres George Freire
    de Lima, Joao Luis Mendes Pedroso
    [J]. REMOTE SENSING, 2023, 15 (10)
  • [20] de Lima Araujo E., 2007, Funct Ecosyst Communities, V1, P15