Heat-Semigroup-Based Besov Capacity on Dirichlet Spaces and Its Applications

被引:0
作者
Xie, Xiangyun [1 ]
Wang, Haihui [2 ]
Liu, Yu [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; Dirichlet space; heat kernel; capacity; Sobolev inequality; BOUNDED VARIATION; COHOMOLOGY; SOBOLEV;
D O I
10.3390/math12070931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Besov space and the Besov capacity and obtain several important capacitary inequalities in a strictly local Dirichlet space, which satisfies the doubling condition and the weak Bakry-emery condition. It is worth noting that the capacitary inequalities in this paper are proved if the Dirichlet space supports the weak (1,2)-Poincare inequality, which is weaker than the weak (1,1)-Poincare inequality investigated in the previous references. Moreover, we first consider the strong subadditivity and its equality condition for the Besov capacity in metric space.
引用
收藏
页数:17
相关论文
共 32 条
[1]   Besov functions and vanishing exponential integrability [J].
Adams, DR ;
Hurri-Syrjänen, R .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) :1137-1150
[2]   Strong type estimates for homogeneous Besov capacities [J].
Adams, DR ;
Xiao, J .
MATHEMATISCHE ANNALEN, 2003, 325 (04) :695-709
[3]   Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates [J].
Alonso-Ruiz, Patricia ;
Baudoin, Fabrice ;
Chen, Li ;
Rogers, Luke ;
Shanmugalingam, Nageswari ;
Teplyaev, Alexander .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
[4]  
Bakry D., 1994, L'hypercontractivite et son utilisation en theorie des semigroupes
[5]  
Bakry D., 1985, Diffusions Hypercontractives, Lecture Notes in Math, Vxix, P1123
[6]   DIFFERENTIAL ONE-FORMS ON DIRICHLET SPACES AND BAKRY-EMERY ESTIMATES ON METRIC GRAPHS [J].
Baudoin, Fabrice ;
Kelleher, Daniel J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (05) :3145-3178
[7]  
Bourdon M, 2004, GEOMETRIAE DEDICATA, V107, P85, DOI 10.1023/B:GEOM.0000049100.08557.2b
[8]  
Bourdon M, 2003, J REINE ANGEW MATH, V558, P85
[9]  
Bourdon M, 2007, ANN ACAD SCI FENN-M, V32, P235
[10]  
Costea S, 2007, REV MAT IBEROAM, V23, P1067