Assessing the Impact of an Artificial Intelligence-Based Model for Intracranial Aneurysm Detection in CT Angiography on Patient Diagnosis and Outcomes (IDEAL Study)-a protocol for a multicenter, double-blinded randomized controlled trial

被引:1
作者
Shi, Zhao [1 ]
Hu, Bin [1 ]
Lu, Mengjie [2 ]
Chen, Zijian [1 ]
Zhang, Manting [3 ]
Yu, Yizhou [4 ]
Zhou, Changsheng [1 ]
Zhong, Jian [1 ]
Wu, Bingqian [5 ]
Zhang, Xueming [1 ]
Wei, Yongyue [6 ]
Zhang, Long Jiang [1 ]
机构
[1] Nanjing Univ, Jinling Hosp, Affiliated Hosp Med Sch, Dept Radiol, Nanjing 210002, Peoples R China
[2] Ningbo Univ, Hlth Sci Ctr, Ningbo 315211, Zhejiang, Peoples R China
[3] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, Nanjing 210002, Peoples R China
[4] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[5] Nanjing Med Univ, Jinling Hosp, Nanjing 210002, Peoples R China
[6] Peking Univ, Ctr Publ Hlth & Epidem Preparedness Response, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Intracranial aneurysms; Randomized controlled trial; Double blinded; Detection; Outcomes; PREDICTION; GUIDELINES; RUPTURE; SCORE; RISK;
D O I
10.1186/s13063-024-08184-9
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background This multicenter, double-blinded, randomized controlled trial (RCT) aims to assess the impact of an artificial intelligence (AI)-based model on the efficacy of intracranial aneurysm detection in CT angiography (CTA) and its influence on patients' short-term and long-term outcomes. Methods Studydesign: Prospective, multicenter, double-blinded RCT. Settings: The model was designed for the automatic detection of intracranial aneurysms from original CTA images. Participants: Adult inpatients and outpatients who are scheduled for head CTA scanning. Randomization groups: (1) Experimental Group: Head CTA interpreted by radiologists with the assistance of the True-AI-integrated intracranial aneurysm diagnosis strategy (True-AI arm). (2) Control Group: Head CTA interpreted by radiologists with the assistance of the Sham-AI-integrated intracranial aneurysm diagnosis strategy (Sham-AI arm). Randomization: Block randomization, stratified by center, gender, and age group. Primary outcomes: Coprimary outcomes of superiority in patient-level sensitivity and noninferiority in specificity for the True-AI arm to the Sham-AI arm in intracranial aneurysms. Secondary outcomes: Diagnostic performance for other intracranial lesions, detection rates, workload of CTA interpretation, resource utilization, treatment-related clinical events, aneurysm-related events, quality of life, and cost-effectiveness analysis. Blinding: Study participants and participating radiologists will be blinded to the intervention. Sample size: Based on our pilot study, the patient-level sensitivity is assumed to be 0.65 for the Sham-AI arm and 0.75 for the True-AI arm, with specificities of 0.90 and 0.88, respectively. The prevalence of intracranial aneurysms for patients undergoing head CTA in the hospital is approximately 12%. To establish superiority in sensitivity and noninferiority in specificity with a margin of 5% using a one-sided alpha=0.025 to ensure that the power of coprimary endpoint testing reached 0.80 and a 5% attrition rate, the sample size was determined to be 6450 in a 1:1 allocation to True-AI or Sham-AI arm. Discussion The study will determine the precise impact of the AI system on the detection performance for intracranial aneurysms in a double-blinded design and following the real-world effects on patients' short-term and long-term outcomes.
引用
收藏
页数:14
相关论文
共 42 条
[11]   Artificial Intelligence in Health Care Will the Value Match the Hype? [J].
Emanuel, Ezekiel J. ;
Wachter, Robert M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 321 (23) :2281-2282
[12]   Artificial Intelligence Algorithm Improves Radiologist Performance in Skeletal Age Assessment: A Prospective Multicenter Randomized Controlled Trial [J].
Eng, David K. ;
Khandwala, Nishith B. ;
Long, Jin ;
Fefferman, Nancy R. ;
Lala, Shailee, V ;
Strubel, Naomi A. ;
Milla, Sarah S. ;
Filice, Ross W. ;
Sharp, Susan E. ;
Towbin, Alexander J. ;
Francavilla, Michael L. ;
Kaplan, Summer L. ;
Ecklund, Kirsten ;
Prabhu, Sanjay P. ;
Dillon, Brian J. ;
Everist, Brian M. ;
Anton, Christopher G. ;
Bittman, Mark E. ;
Dennis, Rebecca ;
Larson, David B. ;
Seekins, Jayne M. ;
Silva, Cicero T. ;
Zandieh, Arash R. ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Halabi, Safwan S. .
RADIOLOGY, 2021, 301 (03) :692-699
[13]   European Stroke Organisation (ESO) guidelines on management of unruptured intracranial aneurysms [J].
Etminan, Nima ;
de Sousa, Diana Aguiar ;
Tiseo, Cindy ;
Bourcier, Romain ;
Desal, Hubert ;
Lindgren, Anttii ;
Koivisto, Timo ;
Netuka, David ;
Peschillo, Simone ;
Lemeret, Sabrina ;
Lal, Avtar ;
Di Vergouwen, Mervyn ;
Rinkel, Gabriel Je .
EUROPEAN STROKE JOURNAL, 2022, 7 (03) :V-V
[14]   Unruptured intracranial aneurysms: development, rupture and preventive management [J].
Etminan, Nima ;
Rinkel, Gabriel J. .
NATURE REVIEWS NEUROLOGY, 2016, 12 (12) :699-713
[15]   Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies [J].
Greving, Jacoba P. ;
Wermer, Marieke J. H. ;
Brown, Robert D., Jr. ;
Morita, Akio ;
Juvela, Seppo ;
Yonekura, Masahiro ;
Ishibashi, Toshihiro ;
Torner, James C. ;
Nakayama, Takeo ;
Rinke, Gabriel J. E. ;
Algra, Ale .
LANCET NEUROLOGY, 2014, 13 (01) :59-66
[16]   Blinded, randomized trial of sonographer versus AI cardiac function assessment [J].
He, Bryan ;
Kwan, Alan C. ;
Cho, Jae Hyung ;
Yuan, Neal ;
Pollick, Charles ;
Shiota, Takahiro ;
Ebinger, Joseph ;
Bello, Natalie A. ;
Wei, Janet ;
Josan, Kiranbir ;
Duffy, Grant ;
Jujjavarapu, Melvin ;
Siegel, Robert ;
Cheng, Susan ;
Zou, James Y. ;
Ouyang, David .
NATURE, 2023, 616 (7957) :520-+
[17]   Assessing the impact of attrition in randomized controlled trials [J].
Hewitt, Catherine E. ;
Kumaravel, Bharathy ;
Dumville, Jo C. ;
Torgerson, David J. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2010, 63 (11) :1264-1270
[18]   2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association [J].
Hoh, Brian L. ;
Ko, Nerissa U. ;
Amin-Hanjani, Sepideh ;
Chou, Sherry Hsiang-Yi ;
Cruz-Flores, Salvador ;
Dangayach, Neha S. ;
Derdeyn, Colin P. ;
Du, Rose ;
Haenggi, Daniel ;
Hetts, Steven W. ;
Ifejika, Nneka L. ;
Johnson, Regina ;
Keigher, Kiffon M. ;
Leslie-Mazwi, Thabele M. ;
Lucke-Wold, Brandon ;
Rabinstein, Alejandro A. ;
Robicsek, Steven A. ;
Stapleton, Christopher J. ;
Suarez, Jose I. ;
Tjoumakaris, Stavropoula I. ;
Welch, Babu G. .
STROKE, 2023, 54 (07) :E314-E370
[19]  
Institute NC., PatientReported Outcome Common Terminology Criteria for Adverse Events (PROCTCAE),
[20]   Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study [J].
Jaja, Blessing N. R. ;
Saposnik, Gustavo ;
Lingsma, Hester F. ;
Macdonald, Erin ;
Thorpe, Kevin E. ;
Mamdani, Muhammed ;
Steyerberg, Ewout W. ;
Molyneux, Andrew ;
Manoel, Airton Leonardo de Oliveira ;
Schatlo, Bawarjan ;
Hanggi, Daniel ;
Hasan, David ;
Wong, George K. C. ;
Etminan, Nima ;
Fukuda, Hitoshi ;
Torner, James ;
Schaller, Karl L. ;
Suarez, Jose I. ;
Stienen, Martin N. ;
Vergouwen, Mervyn D. I. ;
Rinkel, Gabriel J. E. ;
Spears, Julian ;
Cusimano, Michael D. ;
Todd, Michael ;
Le Roux, Peter ;
Kirkpatrick, Peter ;
Pickard, John ;
van den Bergh, Walter M. ;
Murray, Gordon ;
Johnston, S. Claiborne ;
Yamagata, Sen ;
Mayer, Stephan ;
Schweizer, Tom A. ;
Macdonald, R. Loch .
BMJ-BRITISH MEDICAL JOURNAL, 2018, 360