Nonlinear Maps Preserving the Mixed Type Product (M⋄N∘W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\diamond N \circ W)$$\end{document} on ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Algebras

被引:0
作者
Mohammad Aslam Siddeeque [1 ]
Raof Ahmad Bhat [1 ]
Abbas Hussain Shikeh [1 ]
机构
[1] Aligarh Muslim University,Department of Mathematics
关键词
-algebra; Isomorphism; Von Neumann algebra; 16W20; 46L10; 47B48;
D O I
10.1007/s40995-024-01666-0
中图分类号
学科分类号
摘要
Let S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {B}}$$\end{document} be two unital ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-algebras such that S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} has a nontrivial projection. In the present article, we demonstrate, under certain restrictions that if a bijective map Δ:S→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta :{\mathcal {S}}\rightarrow {\mathfrak {B}}$$\end{document} satisfies Δ(M⋄N∘W)=Δ(M)⋄Δ(N)∘Δ(W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (M\diamond N \circ W) = \Delta (M)\diamond \Delta (N)\circ \Delta (W)$$\end{document} for all M,N,W∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M, N, W \in {\mathcal {S}}$$\end{document}, then Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document} is a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-preserving ring isomorphism. As an application, we will describe these mappings on factor von Neumann algebras.
引用
收藏
页码:1307 / 1312
页数:5
相关论文
共 62 条
[41]  
Taghavi A(undefined)-algebras undefined undefined undefined-undefined
[42]  
Tavakoli E(undefined)Nonlinear maps preserving the mixed skew Lie triple product on factor von Neumann algebras undefined undefined undefined-undefined
[43]  
Yang Z(undefined)Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras undefined undefined undefined-undefined
[44]  
Zhang J(undefined)Nonlinear maps preserving mixed Lie triple products on factor von Neumann algebras undefined undefined undefined-undefined
[45]  
Yang Z(undefined)Nonlinear maps preserving Lie products on factor von Neumann algebra undefined undefined undefined-undefined
[46]  
Zhang J(undefined)Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras undefined undefined undefined-undefined
[47]  
Yang Z(undefined)Nonlinear maps preserving the mixed product on factors undefined undefined undefined-undefined
[48]  
Zhang J(undefined)Nonlinear maps preserving mixed product on factors undefined undefined undefined-undefined
[49]  
Zhang JH(undefined)Nonlinear mixed Lie triple derivations on prime undefined undefined undefined-undefined
[50]  
Zhang FJ(undefined)-algebras undefined undefined undefined-undefined