Nonlinear Maps Preserving the Mixed Type Product (M⋄N∘W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\diamond N \circ W)$$\end{document} on ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Algebras

被引:0
作者
Mohammad Aslam Siddeeque [1 ]
Raof Ahmad Bhat [1 ]
Abbas Hussain Shikeh [1 ]
机构
[1] Aligarh Muslim University,Department of Mathematics
关键词
-algebra; Isomorphism; Von Neumann algebra; 16W20; 46L10; 47B48;
D O I
10.1007/s40995-024-01666-0
中图分类号
学科分类号
摘要
Let S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {B}}$$\end{document} be two unital ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-algebras such that S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} has a nontrivial projection. In the present article, we demonstrate, under certain restrictions that if a bijective map Δ:S→B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta :{\mathcal {S}}\rightarrow {\mathfrak {B}}$$\end{document} satisfies Δ(M⋄N∘W)=Δ(M)⋄Δ(N)∘Δ(W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (M\diamond N \circ W) = \Delta (M)\diamond \Delta (N)\circ \Delta (W)$$\end{document} for all M,N,W∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M, N, W \in {\mathcal {S}}$$\end{document}, then Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document} is a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-preserving ring isomorphism. As an application, we will describe these mappings on factor von Neumann algebras.
引用
收藏
页码:1307 / 1312
页数:5
相关论文
共 62 条
[1]  
Ansari AZ(2023)Jordan Filomat 37 37-41
[2]  
Shujat F(2024)-derivations on standard operator algebras AIMS Math 9 4109-4117
[3]  
Ansari AZ(2023)An extension of Herstein theorem on Banach algebra Rock Mount J Math 53 671-678
[4]  
Alrehaili S(2012)Nonlinear maps preserving the mixed product J Math Anal App 386 103-109
[5]  
Shujat F(2023) on von Neumann algebras Commun Korean Math Soc 38 1019-1028
[6]  
Abedini L(2009)Maps preserving products Linear Algebra Appl 431 833-842
[7]  
Taghavi A(2014)- J Math Anal Appl 409 180-188
[8]  
Bai Z(2015) on von Neumann algebras J Math Anal Appl 430 830-844
[9]  
Du S(2018)Nonlinear maps preserving the mixed product Chin Ann Math Ser B 39 633-642
[10]  
Bhat RA(2013) on Linear Algebra Appl 438 2339-2345