Generating Multi-Wing Hidden Hyperchaotic Attractors With a Single Stable Equilibrium

被引:10
作者
Yang, Yan [1 ]
Huang, Lilian [2 ,3 ]
Yu, Xihong [4 ]
Kuznetsov, Nikolay V. [5 ,6 ]
Lai, Qiang [7 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Informat & Commun Engn, Key Lab Adv Marine Commun & Informat Technol, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Natl Key Lab Underwater Acoust Technol, Harbin 150001, Peoples R China
[4] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
[5] St Petersburg State Univ, Fac Math & Mech, St Petersburg 199034, Russia
[6] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[7] East China Jiaotong Univ, Sch Elect & Automat Engn, Nanchang 330013, Peoples R China
关键词
Switches; Jacobian matrices; Chaotic communication; Trajectory; Phase modulation; Systematics; System dynamics; Hyperchaos; hidden attractor; multi-wing attractor; node-focus equilibrium; CHAOTIC SYSTEM;
D O I
10.1109/TCSII.2023.3335096
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-wing hyperchaotic systems with hidden attractors are recognized having advantages in certain aspects of complexity and unpredictability. However, for the hyperchaotic system with a single stable equilibrium point, the generated hidden attractor cannot be characterized by the local characteristic of the equilibrium point, which makes the generation of multi-wing hidden hyperchaotic attractors with only one stable equilibrium be a challenging work. In this brief, we present a systematic approach to generating multi-wing hidden hyperchaotic attractors from four-dimensional system with a single stable equilibrium, which is carried out by employing sawtooth wave to implement linear offset switch of the wings. Details of the numerical computation and experimental examination are presented to support the feasibility of the approach.
引用
收藏
页码:2374 / 2378
页数:5
相关论文
共 21 条
[1]   Four-Wing Hidden Attractors with One Stable Equilibrium Point [J].
Deng, Quanli ;
Wang, Chunhua ;
Yang, Linmao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (06)
[2]   Multi-scroll hidden attractors with two stable equilibrium points [J].
Deng, Quanli ;
Wang, Chunhua .
CHAOS, 2019, 29 (09)
[3]   Hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Jafari, Sajad ;
Kapitaniak, Tomasz ;
Kuznetsov, Nikolay V. ;
Leonov, Gennady A. ;
Prasad, Awadhesh .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 :1-50
[4]   HIDDEN ATTRACTORS IN DYNAMICAL SYSTEMS. FROM HIDDEN OSCILLATIONS IN HILBERT-KOLMOGOROV, AIZERMAN, AND KALMAN PROBLEMS TO HIDDEN CHAOTIC ATTRACTOR IN CHUA CIRCUITS [J].
Leonov, G. A. ;
Kuznetsov, N. V. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01)
[5]   Localization of hidden Chua's attractors [J].
Leonov, G. A. ;
Kuznetsov, N. V. ;
Vagaitsev, V. I. .
PHYSICS LETTERS A, 2011, 375 (23) :2230-2233
[6]   Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria [J].
Li, Qingdu ;
Zeng, Hongzheng ;
Li, Jing .
NONLINEAR DYNAMICS, 2015, 79 (04) :2295-2308
[7]   SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM [J].
Molaie, Malihe ;
Jafari, Sajad ;
Sprott, Julien Clinton ;
Golpayegani, S. Mohammad Reza Hashemi .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11)
[8]   Experimental observation of hidden Chua's attractor [J].
Wang, Ning ;
Xu, Dan ;
Kuznetsov, N. V. ;
Bao, Han ;
Chen, Mo ;
Xu, Quan .
CHAOS SOLITONS & FRACTALS, 2023, 170
[9]   Generating grid chaotic sea from system without equilibrium point [J].
Wang, Ning ;
Zhang, Guoshan ;
Kuznetsov, N., V ;
Li, Houzhen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
[10]   Generating Multi-Scroll Chua's Attractors via Simplified Piecewise-Linear Chua's Diode [J].
Wang, Ning ;
Li, Chengqing ;
Bao, Han ;
Chen, Mo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (12) :4767-4779