Spark Plasma Sintering of Al2O3-SiC Ceramics. Study of the Microstructure and Properties

被引:0
作者
Boldin, M. S. [1 ]
Popov, A. A. [1 ]
Murashov, A. A. [1 ]
Sakharov, N. V. [1 ]
Shotin, S. V. [1 ]
Nokhrin, A. V. [1 ]
Chuvil'deev, V. N. [1 ]
Smetanina, K. E. [1 ]
Tabachkova, N. Yu. [2 ,3 ]
机构
[1] Lobachevsky Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
[2] Natl Univ Sci & Technol MISiS, Moscow, Russia
[3] Russian Acad Sci, Prokhorov Inst Gen Phys, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
alumina; silicon carbide; density; diffusion; hardness; MECHANICAL-PROPERTIES; SILICON-CARBIDE; COMPOSITES; ALUMINA; NANOCOMPOSITES; DENSIFICATION; PERFORMANCE;
D O I
10.1134/S1063784224010055
中图分类号
O59 [应用物理学];
学科分类号
摘要
The features of spark plasma sintering of submicron Al2O3 powders with different contents (0, 0.5, 1.5, 5 vol %) of beta-SiC nanoparticles have been studied. The microstructure and hardness of Al2O3 + 5 vol % SiC ceramics obtained by sintering Al2O3 powders with beta-SiC particles of various types (nanoparticles, submicron particles, fibers) have been studied. Sintering was carried out at heating rates (V-h) from 10 to 700 degrees C/min. The sintering process of Al2O3 + SiC ceramics with low heating rates (V-h = 10-50 degrees C/min) has a complex three-stage character, with a flat area in the temperature range of 1200-1300 degrees C. At high heating rates (V-h > 250 degrees C/min), the usual three-stage character of sintering is observed. The analysis of temperature dependences of compaction was carried out using the Young-Cutler model; it was found that the kinetics of powder sintering is limited by the intensity of grain boundary diffusion. It is shown that the dependence of the hardness of Al2O3 + SiC ceramics on V(h )has a nonmonotonic character, with a maximum. In the case of pure alumina, an increase in V(h )leads to a monotonic decrease in hardness.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 26 条
[1]   Microstructural design of Al2O3-SiC nanocomposites by Spark Plasma Sintering [J].
Alvarez, I. ;
Torrecillas, R. ;
Solis, W. ;
Peretyagin, P. ;
Fernandez, A. .
CERAMICS INTERNATIONAL, 2016, 42 (15) :17248-17253
[2]   Pressureless sintering and elastic constants of Al2O3-SiC 'nanocomposites' [J].
Anya, CC ;
Roberts, SG .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1997, 17 (04) :565-573
[3]   Excess free volume and mechanical properties of amorphous alloys [J].
Betekhtin, VI ;
Kadomtsev, AG ;
Kipyatkova, AY ;
Glezer, AM .
PHYSICS OF THE SOLID STATE, 1998, 40 (01) :74-78
[4]   Interplay between decarburization, oxide segregation, and densification during sintering of nanocrystalline TaC and NbC [J].
Bokov, Arseniy ;
Shelyug, Anna ;
Kurlov, Alexey .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (12) :5801-5812
[5]   Review of ballistic performance of alumina: Comparison of alumina with silicon carbide and boron carbide [J].
Boldin, M. S. ;
Berendeev, N. N. ;
Melekhin, N., V ;
Popov, A. A. ;
Nokhrin, A., V ;
Chuvildeev, V. N. .
CERAMICS INTERNATIONAL, 2021, 47 (18) :25201-25213
[6]   Investigation of the Densification Behavior of Alumina during Spark Plasma Sintering [J].
Boldin, Maksim S. ;
Popov, Alexander A. ;
Lantsev, Evgeni A. ;
Nokhrin, Aleksey, V ;
Chuvil'deev, Vladimir N. .
MATERIALS, 2022, 15 (06)
[7]   Microstructural evolution of Al2O3-SiC nanocomposites during spark plasma sintering [J].
Chae, JH ;
Kim, KH ;
Choa, YH ;
Matsushita, J ;
Yoon, JW ;
Shim, KB .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 413 (1-2) :259-264
[8]   Comparative Study of Hot Pressing and High-Speed Electropulse Plasma Sintering of Al2O3/ZrO2/Ti(C,N) Powders [J].
Chuvil'deev, V. N. ;
Boldin, M. S. ;
Dyatlova, Ya. G. ;
Rumyantsev, V. I. ;
Ordanyan, S. S. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2015, 60 (08) :987-993
[9]  
Chuvildeev V.N., 2004, Nonequilibrium Grains Boundaries in Metals: Theory and Applications
[10]   Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites [J].
Dong, Y. L. ;
Xu, F. M. ;
Shi, X. L. ;
Zhang, C. ;
Zhang, Z. J. ;
Yang, J. M. ;
Tan, Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 504 (1-2) :49-54