O(N3) Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians

被引:73
作者
Gokhale, Pranav [1 ]
Angiuli, Olivia [2 ]
Ding, Yongshan [3 ]
Gui, Kaiwen [3 ]
Tomesh, Teague [4 ]
Suchara, Martin [5 ]
Martonosi, Margaret [4 ]
Chong, Frederic T. [3 ]
机构
[1] Super Tech, Chicago, IL 60616 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Univ Chicago, Chicago, IL 60637 USA
[4] Princeton Univ, Princeton, NJ 08544 USA
[5] Argonne Natl Lab, Lemont, IL 60439 USA
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2020年 / 1卷
基金
美国国家科学基金会;
关键词
Quantum computing; variational quantum eigensolver (VQE); ALGORITHMS;
D O I
10.1109/TQE.2020.3035814
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Variational quantum eigensolver (VQE) is a promising algorithm for near-term quantum machines. It can be used to estimate the ground state energy of a molecule by performing separate measurements of O(N-4) terms. This quartic scaling appears to be a significant obstacle to practical applications. However, we note that it empirically reduces to O(N-3) when we partition the terms into linear-sized commuting families that can be measured simultaneously. We confirm these empirical observations by studying the MINCOMMUTING-PARTITION problem at the level of the fermionic Hamiltonian and its encoding into qubits. Moreover, we provide a fast, precomputable procedure for creating linearly sized commuting partitions by solving a round-robin scheduling problem via flow networks. In addition, we demonstrate how to construct the quantum circuits necessary for simultaneous measurement, and we discuss the statistical implication of simultaneous measurement. Our results are experimentally validated by a ground state estimation of deuteron with low shot budget on a 20-qubit IBM machine.
引用
收藏
页数:24
相关论文
共 95 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]  
[Anonymous], 2001, SciPy: open source scientific tools for Python, DOI DOI 10.1002/MP.16056
[3]  
[Anonymous], 2018, Quantum devices simulators - IBM Q
[4]   Hamiltonian decompositions of complete k-uniform hypergraphs [J].
Bailey, Robert F. ;
Stevens, Brett .
DISCRETE MATHEMATICS, 2010, 310 (22) :3088-3095
[5]  
Baranyai Zsolt, 1974, Infinite and finite sets
[6]   Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions [J].
Barkoutsos, Panagiotis Kl ;
Gonthier, Jerome F. ;
Sokolov, Igor ;
Moll, Nikolaj ;
Salis, Gian ;
Fuhrer, Andreas ;
Ganzhorn, Marc ;
Egger, Daniel J. ;
Troyer, Matthias ;
Mezzacapo, Antonio ;
Filipp, Stefan ;
Tavernelli, Ivano .
PHYSICAL REVIEW A, 2018, 98 (02)
[7]  
Bartlett Padraic., 2015, Lecture 2: The max-flow min-cut theorem
[8]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[9]   APPROXIMATING MAXIMUM INDEPENDENT SETS BY EXCLUDING SUBGRAPHS [J].
BOPPANA, R ;
HALLDORSSON, MM .
BIT, 1992, 32 (02) :180-196
[10]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226