Remote Sensing Estimations of the Seawater Partial Pressure of CO2 Using Sea Surface Roughness Derived From Synthetic Aperture Radar

被引:2
作者
Wang, Yiren [1 ,2 ]
Wu, Zelun [1 ,3 ]
Lu, Wenfang [4 ]
Yu, Shujie [5 ]
Li, Shihui [1 ]
Meng, Lingsheng [3 ]
Geng, Xupu [1 ,2 ]
Yan, Xiao-Hai [3 ]
机构
[1] Xiamen Univ, Coll Ocean & Earth Sci, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Engn Res Ctr Ocean Remote Sensing Big Data, Xiamen 361005, Peoples R China
[3] Univ Delaware, Coll Earth Ocean & Environm, Newark, NJ 19716 USA
[4] Sun Yat Sen Univ, Sch Marine Sci, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
[5] Jimei Univ, Coll Harbor & Coastal Engn, Polar & Marine Res Inst, Xiamen 361021, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Spatial resolution; Sea measurements; Oceans; Remote sensing; Wind speed; Synthetic aperture radar; Ocean temperature; Cubist method; sea surface partial pressure of carbon dioxide (pCO(2w)); sea surface roughness (SSR); synthetic aperture radar (SAR); GEOPHYSICAL MODEL FUNCTION; IN-SITU; OCEAN PCO(2); NORTH-ATLANTIC; INTERANNUAL VARIABILITY; SUPPORT VECTOR; CARBON-DIOXIDE; RANDOM FOREST; INDIAN-OCEAN; SATELLITE;
D O I
10.1109/TGRS.2024.3379984
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing study of the carbon cycle in coastal marine systems using machine learning methods has received significant attention recently. The partial pressure of carbon dioxide (CO2) in seawater ( pCO(2w)) is a crucial parameter for quantifying the air-sea carbon dioxide exchange. However, previous studies did not consider the effect of sea surface roughness (SSR) on pCO(2w) caused by wind, waves, and other ocean dynamics. In this study, for the first time, we used SSR data derived from synthetic aperture radar (SAR), with sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface salinity (SSS) conventional remote sensing data to predict the pCO(2w) data along the North American East Coast from 2015 to 2021 using the Cubist algorithm. Results show that the semi-analytic algorithm, Cubist, performs best among 20 statistical and machine learning models. Moreover, compared with the control experiment without the SSR data, after adding SSR as an independent variable, the final Cubist model's coefficient of determination ( R-2 ) increased from 0.88 to 0.95, and the root mean square error (RMSE) reduced from 21.75 to 14.79 mu atm. Our results showed significant improvement over the previous study ( R-2 = 0.8), proving the applicability of applying SSR data in retrieving high spatial resolution carbonate system parameters in the future, especially for coastal regions where wind and wave dynamics are more variable.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 94 条
[1]  
Al Shalabi L., 2006, Journal of Computer Sciences, V2, P735, DOI 10.3844/jcssp.2006.735.739
[2]   ATMOSPHERIC BOUNDARY-LAYER ROLLS OBSERVED BY THE SYNTHETIC-APERTURE RADAR ABOARD THE ERS-1 SATELLITE [J].
ALPERS, W ;
BRUMMER, B .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1994, 99 (C6) :12613-12621
[3]   Oil spill detection by imaging radars: Challenges and pitfalls [J].
Alpers, Werner ;
Holt, Benjamin ;
Zeng, Kan .
REMOTE SENSING OF ENVIRONMENT, 2017, 201 :133-147
[4]   A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea [J].
Bai, Yan ;
Cai, Wei-Jun ;
He, Xianqiang ;
Zhai, Weidong ;
Pan, Delu ;
Dai, Minhan ;
Yu, Peisong .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (03) :2331-2349
[5]   The changing carbon cycle of the coastal ocean [J].
Bauer, James E. ;
Cai, Wei-Jun ;
Raymond, Peter A. ;
Bianchi, Thomas S. ;
Hopkinson, Charles S. ;
Regnier, Pierre A. G. .
NATURE, 2013, 504 (7478) :61-70
[6]   Satellite sea surface temperature:: a powerful tool for interpreting in situ pCO2 measurements in the equatorial Pacific Ocean [J].
Boutin, J ;
Etcheto, J ;
Dandonneau, Y ;
Bakker, DCE ;
Feely, RA ;
Inoue, HY ;
Ishii, M ;
Ling, RD ;
Nightingale, PD ;
Metzl, N ;
Wanninkhof, R .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1999, 51 (02) :490-508
[7]  
Brown RA, 2000, J HOPKINS APL TECH D, V21, P21
[8]   Controls on surface water carbonate chemistry along North American ocean margins [J].
Cai, Wei-Jun ;
Xu, Yuan-Yuan ;
Feely, Richard A. ;
Wanninkhof, Rik ;
Jonsson, Bror ;
Alin, Simone R. ;
Barbero, Leticia ;
Cross, Jessica N. ;
Azetsu-Scott, Kumiko ;
Fassbender, Andrea J. ;
Carter, Brendan R. ;
Jiang, Li-Qing ;
Pepin, Pierre ;
Chen, Baoshan ;
Hussain, Najid ;
Reimer, Janet J. ;
Xue, Liang ;
Salisbury, Joseph E. ;
Martin Hernandez-Ayon, Jose ;
Langdon, Chris ;
Li, Qian ;
Sutton, Adrienne J. ;
Chen, Chen-Tung A. ;
Gledhill, Dwight K. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   THE LOGNORMAL-DISTRIBUTION AS A MODEL FOR BIOOPTICAL VARIABILITY IN THE SEA [J].
CAMPBELL, JW .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1995, 100 (C7) :13237-13254
[10]   Estimation of monthly air-sea CO2 flux in the southern Atlantic and Indian Ocean using in-situ and remotely sensed data [J].
Chen, Liqi ;
Xu, Suqing ;
Gao, Zhongyong ;
Chen, Haiying ;
Zhang, Yuanhui ;
Zhan, Jianqiong ;
Li, Wei .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) :1935-1941