Continuous Atrial Fibrillation Monitoring From Photoplethysmography Comparison Between Supervised Deep Learning and Heuristic Signal Processing

被引:4
作者
Antiperovitch, Pavel [1 ,2 ]
Mortara, David [1 ,2 ]
Barrios, Joshua [1 ,2 ,3 ]
Avram, Robert [1 ,2 ,4 ,5 ]
Yee, Kimberly [1 ,2 ]
Khaless, Armeen Namjou [1 ,2 ]
Cristal, Ashley [1 ,2 ]
Tison, Geoffrey [1 ,2 ,3 ]
Olgin, Jeffrey [1 ,2 ]
机构
[1] Univ Calif San Francisco, Dept Med, Div Cardiol, 505 Parnassus Ave, San Francisco, CA 94117 USA
[2] Univ Calif San Francisco, Cardiovasc Res Inst, 505 Parnassus Ave, San Francisco, CA 94117 USA
[3] Univ Calif San Fran cisco, Bakar Computat Hlth Sci Inst, San Francisco, CA USA
[4] Univ Montreal, Montreal Heart Inst, Dept Med, Montreal, PQ, Canada
[5] Heartwise ai Lab, Montreal, PQ, Canada
基金
美国国家卫生研究院;
关键词
atrial fibrillation; deep learning; rhythm monitoring; signal processing; smartwatch;
D O I
10.1016/j.jacep.2024.01.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Continuous monitoring for atrial fibrillation (AF) using photoplethysmography (PPG) from smartwatches or other wearables is challenging due to periods of poor signal quality during motion or suboptimal wearing. As a result, many consumer wearables sample infrequently and only analyze when the user is at rest, which limits the ability to perform continuous monitoring or to quantify AF. OBJECTIVES This study aimed to compare 2 methods of continuous monitoring for AF in free-living patients: a well -validated signal processing (SP) heuristic and a convolutional deep neural network (DNN) trained on raw signal. METHODS We collected 4 weeks of continuous PPG and electrocardiography signals in 204 free-living patients. Both SP and DNN models were developed and validated both on holdout patients and an external validation set. RESULTS The results show that the SP model demonstrated receiver -operating characteristic area under the curve (AUC) of 0.972 (sensitivity 99.6%, specificity: 94.4%), which was similar to the DNN receiver -operating characteristic AUC of 0.973 (sensitivity 92.2, specificity: 95.5%); however, the DNN classified significantly more data (95% vs 62%), revealing its superior tolerance of tracings prone to motion artifact. Explainability analysis revealed that the DNN automatically suppresses motion artifacts, evaluates irregularity, and learns natural AF interbeat variability. The DNN performed better and analyzed more signal in the external validation cohort using a different population and PPG sensor (AUC, 0.994; 97% analyzed vs AUC, 0.989; 88% analyzed). CONCLUSIONS DNNs perform at least as well as SP models, classify more data, and thus may be better for continuous PPG monitoring. (J Am Coll Cardiol EP 2024;10:334-345) (c) 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:334 / 345
页数:12
相关论文
共 27 条
[1]  
Aliamiri Alireza, 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), P442, DOI 10.1109/BHI.2018.8333463
[2]   The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation [J].
Andrade, Jason G. ;
Aguilar, Martin ;
Atzema, Clare ;
Bell, Alan ;
Cairns, John A. ;
Cheung, Christopher C. ;
Cox, Jafna L. ;
Dorian, Paul ;
Gladstone, David J. ;
Healey, Jeff S. ;
Khairy, Paul ;
Leblanc, Kori ;
McMurtry, M. Sean ;
Mitchell, L. Brent ;
Nair, Girish M. ;
Nattel, Stanley ;
Parkash, Ratika ;
Pilote, Louise ;
Sandhu, Roopinder K. ;
Sarrazin, Jean-Francois ;
Sharma, Mukul ;
Skanes, Allan C. ;
Talajic, Mario ;
Tsang, Teresa S. M. ;
Verma, Atul ;
Verma, Subodh ;
Whitlock, Richard ;
Wyse, D. George ;
Macle, Laurent .
CANADIAN JOURNAL OF CARDIOLOGY, 2020, 36 (12) :1847-1948
[3]   Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation [J].
Andrade, Jason G. ;
Wells, George A. ;
Deyell, Marc W. ;
Bennett, Matthew ;
Essebag, Vidal ;
Champagne, Jean ;
Roux, Jean-Francois ;
Yung, Derek ;
Skanes, Allan ;
Khaykin, Yaariv ;
Morillo, Carlos ;
Jolly, Umjeet ;
Novak, Paul ;
Lockwood, Evan ;
Amit, Guy ;
Angaran, Paul ;
Sapp, John ;
Wardell, Stephan ;
Lauck, Sandra ;
Macle, Laurent ;
Verma, Atul .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (04) :305-315
[4]   Validation of an algorithm for continuous monitoring of atrial fibrillation using a consumer smartwatch [J].
Avram, Robert ;
Ramsis, Mattheus ;
Cristal, Ashley D. ;
Nathan, Viswam ;
Zhu, Li ;
Kim, Jacob ;
Kuang, Jilong ;
Gao, Alex ;
Vittinghoff, Eric ;
Rohdin-Bibby, Linnea ;
Yogi, Sara ;
Seremet, Emina ;
Carp, Valerie ;
Badilini, Fabio ;
Pletcher, Mark J. ;
Marcus, Gregory M. ;
Mortara, David ;
Olgin, Jeffrey E. .
HEART RHYTHM, 2021, 18 (09) :1482-1490
[5]  
Castaneda Denisse, 2018, Int J Biosens Bioelectron, V4, P195, DOI 10.15406/ijbsbe.2018.04.00125
[6]   Detection of atrial fibrillation using an earlobe photoplethysmographic sensor [J].
Conroy, Thomas ;
Guzman, Jairo Hernandez ;
Hall, Burr ;
Tsouri, Gill ;
Couderc, Jean-Philippe .
PHYSIOLOGICAL MEASUREMENT, 2017, 38 (10) :1906-1918
[7]  
Gotlibovych I, 2018, Arxiv, DOI arXiv:1807.10707
[8]   Early Rhythm-Control Therapy in Patients with Atrial Fibrillation [J].
Kirchhof, Paulus ;
Camm, A. John ;
Goette, Andreas ;
Brandes, Axel ;
Eckardt, Lars ;
Elvan, Arif ;
Fetsch, Thomas ;
van Gelder, Isabelle C. ;
Haase, Doreen ;
Haegeli, Laurent M. ;
Hamann, Frank ;
Heidbuchel, Hein ;
Hindricks, Gerhard ;
Kautzner, Josef ;
Kuck, Karl-Heinz ;
Mont, Lluis ;
Ng, G. Andre ;
Rekosz, Jerzy ;
Schoen, Norbert ;
Schotten, Ulrich ;
Suling, Anna ;
Taggeselle, Jens ;
Themistoclakis, Sakis ;
Vettorazzi, Eik ;
Vardas, Panos ;
Wegscheider, Karl ;
Willems, Stephan ;
Crijns, Harry J. G. M. ;
Breithardt, Gunter .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (14) :1305-1316
[9]   Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study [J].
Kwon, Soonil ;
Hong, Joonki ;
Choi, Eue-Keun ;
Lee, Euijae ;
Hostallero, David Earl ;
Kang, Wan Ju ;
Lee, Byunghwan ;
Jeong, Eui-Rim ;
Koo, Bon-Kwon ;
Oh, Seil ;
Yi, Yung .
JMIR MHEALTH AND UHEALTH, 2019, 7 (06)
[10]   Time-Varying Coherence Function for Atrial Fibrillation Detection [J].
Lee, Jinseok ;
Nam, Yunyoung ;
McManus, David D. ;
Chon, Ki H. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (10) :2783-2793