Persistence of the Non-twist Degenerate Lower Dimensional Invariant Torus in Reversible Systems

被引:0
作者
Yang, Xiaomei [1 ,2 ]
Xu, Junxiang [3 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国博士后科学基金;
关键词
Reversible system; KAM iteration; Invariant tori; Degenerate equilibrium point; RESPONSE SOLUTIONS; EQUILIBRIUM-POINT;
D O I
10.1007/s12346-024-01108-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider nearly integrable reversible systems, whose unperturbed part has a degenerate equilibrium point and a degenerate frequency mapping. Based on the topological degree theory and some KAM techniques, we prove that the non-twist lower dimensional invariant torus with prescribed frequencies persists under small perturbations.
引用
收藏
页数:18
相关论文
共 21 条
[1]  
Brjuno A.D., 1972, THE 3, V26, P199
[2]  
Bruno A.D., 1971, T MOSCOW MATH SOC, V25, P131
[3]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI [10.1007/978-3-662-00547-7, DOI 10.1007/978-3-662-00547-7]
[4]   ON THE NUMBER OF SOLUTIONS TO POLYNOMIAL SYSTEMS OF EQUATIONS [J].
GARCIA, CB ;
LI, TY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (04) :540-546
[5]   Completely degenerate lower-dimensional invariant tori for Hamiltonian system [J].
Hu, Shengqing ;
Liu, Bin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (11) :7459-7480
[6]   Quasi-Periodic Solutions for Differential Equations with an Elliptic-Type Degenerate Equilibrium Point Under Small Perturbations [J].
Li, Xuemei ;
Shang, Zaijiu .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (02) :653-681
[7]   On lower dimensional invariant tori in reversible systems [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :158-194
[8]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[9]  
Poschel J., 2001, SMOOTH ERGODIC THEOR, V69, P707
[10]   INVARIANT TORI IN NON-DEGENERATE NEARLY INTEGRABLE HAMILTONIAN SYSTEMS [J].
Ruessmann, H. .
REGULAR & CHAOTIC DYNAMICS, 2001, 6 (02) :119-204