Unsupervised domain adaptation with post-adaptation labeled domain performance preservation

被引:2
|
作者
Badr, Haidi [1 ]
Wanas, Nayer [1 ]
Fayek, Magda [2 ]
机构
[1] Elect Res Inst, Informat Dept, Giza, Egypt
[2] Cairo Univ, Fac Engn, Comp Dept, Cairo, Egypt
来源
MACHINE LEARNING WITH APPLICATIONS | 2022年 / 10卷
关键词
Unsupervised domain adaptation; Adversarial learning; Labeled performance preservation;
D O I
10.1016/j.mlwa.2022.100439
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation is a machine learning-oriented application that aims to transfer knowledge learned from a seen (source) domain with labeled data to an unseen (target) domain with only unlabeled data. Recently developed techniques apply adversarial learning to learn domain-transferable features. However, current adversarial domain adaptation models suffer from the training instability of adversarial networks. Furthermore, it is unclear what the source domain pays in terms of performance during learning the domain-transferable representation. To address this issue, we propose a novel approach termed U nsupervised D omain A daptation with S ource P reservation (UDA-SP). It shares the same objective of obtaining a generalization representation between different distributions as domain adaptation techniques. Additionally, it has the new objective of preserving efficient performance in the source domain. This is accomplished by learning representations of shared and source-specific features that are separately learned from two distinct networks. Then, they are concatenated with available class information to train a new classifier that has the ability to exploit both shared and domain-specific features. We conducted a comprehensive experimental analysis on three benchmark text datasets. Experiments validate that our proposed method outperforms their competing state-of-the-art methods. Further experiments demonstrate that UDA-SP has a good ability to generalize learned knowledge to unseen domains while maintaining seen domain performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Joint discriminative subspace and distribution adaptation for unsupervised domain adaptation
    Elahe Gholenji
    Jafar Tahmoresnezhad
    Applied Intelligence, 2020, 50 : 2050 - 2066
  • [22] Joint Feature and Labeling Function Adaptation for Unsupervised Domain Adaptation
    Cui, Fengli
    Chen, Yinghao
    Du, Yuntao
    Cao, Yikang
    Wang, Chongjun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT I, 2022, 13280 : 432 - 446
  • [23] Cross-Domain Contrastive Learning for Unsupervised Domain Adaptation
    Wang, Rui
    Wu, Zuxuan
    Weng, Zejia
    Chen, Jingjing
    Qi, Guo-Jun
    Jiang, Yu-Gang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1665 - 1673
  • [24] Enhancing transferability and discriminability simultaneously for unsupervised domain adaptation
    Li, Jingyao
    Lue, Shuai
    Zhu, Wenbo
    Li, Zhanshan
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [25] Layer-wise domain correction for unsupervised domain adaptation
    Shuang Li
    Shi-ji Song
    Cheng Wu
    Frontiers of Information Technology & Electronic Engineering, 2018, 19 : 91 - 103
  • [26] Unsupervised Domain Adaptation via Domain-Adaptive Diffusion
    Peng, Duo
    Ke, Qiuhong
    Ambikapathi, ArulMurugan
    Yazici, Yasin
    Lei, Yinjie
    Liu, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4245 - 4260
  • [27] Layer-wise domain correction for unsupervised domain adaptation
    Li, Shuang
    Song, Shi-ji
    Wu, Cheng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (01) : 91 - 103
  • [28] MultiDIAL: Domain Alignment Layers for (Multisource) Unsupervised Domain Adaptation
    Carlucci, Fabio Maria
    Porzi, Lorenzo
    Caputo, Barbara
    Ricci, Elisa
    Bulo, Samuel Rota
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4441 - 4452
  • [29] Learning Numerical Observers using Unsupervised Domain Adaptation
    He, Shenghua
    Zhou, Weimin
    Li, Hua
    Anastasio, Mark A.
    MEDICAL IMAGING 2020: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2020, 11316
  • [30] Layer-wise domain correction for unsupervised domain adaptation
    Shuang LI
    Shi-ji SONG
    Cheng WU
    FrontiersofInformationTechnology&ElectronicEngineering, 2018, 19 (01) : 91 - 103