Local and global solutions for a subdiffusive parabolic-parabolic Keller-Segel system

被引:0
作者
Bezerra, Mario [1 ]
Cuevas, Claudio [1 ]
Viana, Arlucio [2 ]
机构
[1] Univ Fed Pernambuco, Dept Math, Recife, Brazil
[2] Univ Fed Sergipe, Dept Math, Sao Cristovao, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 05期
关键词
Chemotaxis aggregation; Fractional PDEs; Keller-Segel model; Well-posedness; Continuation of solutions; Blow-up alternative; Global solutions; ASYMPTOTIC-BEHAVIOR; NONLINEAR DIFFUSION; CHEMOTAXIS MODEL; BLOW-UP; EXISTENCE; EQUATIONS; SPACE;
D O I
10.1007/s00033-024-02316-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the fractional-in-time parabolic-parabolic Keller-Segel system in a bounded domain Omega subset of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}<^>{d}$$\end{document} (d >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}), for distinct fractional diffusions of the cells and chemoattractant. We prove results on existence, uniqueness, continuous dependence on the initial data and its robustness, continuation, and a blow-up alternative of solutions in Lebesgue spaces. Then, we use those results to show the existence of global solutions to the problem, when the chemoattractant diffusion is not slower than the cell diffusion.
引用
收藏
页数:30
相关论文
共 51 条
[1]  
Ahmad B, 2020, ELECTRON J DIFFER EQ
[2]   Global existence and asymptotic behavior for a time fractional reaction-diffusion system [J].
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Lassoued, Rafika .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :951-958
[3]  
Amann H., 1984, ANN SCUOLA NORM-SCI, V11, P593
[4]   GLOBAL SOLUTIONS TO THE NON-LOCAL NAVIER-STOKES EQUATIONS [J].
Azevedo, Joelma ;
Pozo, Juan Carlos ;
Viana, Arlucio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05) :2515-2535
[5]   Existence and asymptotic behaviour for the time-fractional Keller-Segel model for chemotaxis [J].
Azevedo, Joelma ;
Cuevas, Claudio ;
Henriquez, Erwin .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) :462-480
[6]   On the fractional doubly parabolic Keller-Segel system modelling chemotaxis [J].
Bezerra, Mario ;
Cuevas, Claudio ;
Silva, Clessius ;
Soto, Herme .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (09) :1827-1874
[7]   Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions [J].
Biler, Piotr ;
Boritchev, Alexandre ;
Brandolese, Lorenzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 :891-914
[8]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583
[9]  
Biler Piotr., 1998, ADV MATH SCI APPL, V8, P715
[10]  
Blanchet A, 2006, ELECTRON J DIFFER EQ