Prediction of atmospheric pollutants in urban environment based on coupled deep learning model and sensitivity analysis

被引:9
|
作者
Wang S. [1 ,2 ]
Ren Y. [2 ]
Xia B. [2 ]
Liu K. [1 ]
Li H. [1 ]
机构
[1] School of Environment, Nanjing Normal University, Nanjing
[2] School of Mathematics and Computer Science, Yan'an University, Yan'an
关键词
Atmospheric pollutants; Attention mechanism; Convolutional neural network; Long short-term memory network; Sensitivity analysis;
D O I
10.1016/j.chemosphere.2023.138830
中图分类号
学科分类号
摘要
Accurate and efficient predictions of pollutants in the atmosphere provide a reliable basis for the scientific management of atmospheric pollution. This study develops a model that combines an attention mechanism, convolutional neural network (CNN), and long short-term memory (LSTM) unit to predict the O3 and PM2.5 levels in the atmosphere, as well as an air quality index (AQI). The prediction results given by the proposed model are compared with those from CNN-LSTM and LSTM models as well as random forest and support vector regression models. The proposed model achieves a correlation coefficient between the predicted and observed values of more than 0.90, outperforming the other four models. The model errors are also consistently lower when using the proposed approach. Sobol-based sensitivity analysis is applied to identify the variables that make the greatest contribution to the model prediction results. Taking the COVID-19 outbreak as the time boundary, we find some homology in the interactions among the pollutants and meteorological factors in the atmosphere during different periods. Solar irradiance is the most important factor for O3, CO is the most important factor for PM2.5, and particulate matter has the most significant effect on AQI. The key influencing factors are the same over the whole phase and before the COVID-19 outbreak, indicating that the impact of COVID-19 restrictions on AQI gradually stabilized. Removing variables that contribute the least to the prediction results without affecting the model prediction performance improves the modeling efficiency and reduces the computational costs. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] The Sensitivity Analysis of Parameters in the 1D-2D Coupled Model for Urban Flooding
    Tang, Zuohuai
    Chu, Junying
    Zhou, Zuhao
    Zhou, Tianhong
    Yuan, Kangqi
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [22] Enthalpy of Formation Prediction for Energetic Materials Based on Deep Learning
    Xu Y.-B.
    Sun S.-J.
    Wu Z.
    Hanneng Cailiao/Chinese Journal of Energetic Materials, 2021, 29 (01): : 20 - 28
  • [23] A deep transfer learning model for green environment security analysis in smart city
    Sahu, Madhusmita
    Dash, Rasmita
    Mishra, Sambit Kumar
    Humayun, Mamoona
    Alfayad, Majed
    Assiri, Mohammed
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [24] Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism
    Guo Z.
    Yang Y.
    He J.
    Huang D.
    Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2024, 49 (05): : 1665 - 1678
  • [25] Research on Big Data-Driven Urban Traffic Flow Prediction Based on Deep Learning
    Qin, Xiaoan
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (01)
  • [26] A Deep Learning-Based Soft Sensing Prediction Model for Tubular Furnace
    Wang, Xiaowen
    Zhang, Yongjun
    Guo, Qiang
    Zhang, Fei
    Yildirim, Tanju
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 13 - 21
  • [27] Rapid spatio-temporal prediction of coastal urban floods based on deep learning approaches
    Zhang, Wenting
    Liu, Yongzhi
    Tang, Wenwen
    Chen, Shunli
    Xie, Weiping
    URBAN CLIMATE, 2023, 52
  • [28] Analysis of Passenger Flow Characteristics and Origin-Destination Passenger Flow Prediction in Urban Rail Transit Based on Deep Learning
    Hou, Zhongwei
    Han, Jin
    Yang, Guang
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [29] Semantic Segmentation of Urban Remote Sensing Images Based on Deep Learning
    Liu, Jingyi
    Wu, Jiawei
    Xie, Hongfei
    Xiao, Dong
    Ran, Mengying
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [30] Maritime Environment Perception Based on Deep Learning
    Lin, Jiaying
    Diekmann, Phillip
    Framing, Christian-Eike
    Zweigel, Rene
    Abel, Dirk
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15487 - 15497