Incipient fault diagnosis of metro train bearing under strong wheel-rail impact interferences using improved complementary CELMDAN and mixture correntropy-based adaptive feature enhancement

被引:0
|
作者
Chen, Jun [1 ]
Hua, Chunrong [2 ]
Dong, Dawei [2 ]
Ouyang, Huajiang [2 ]
Chen, Guang [1 ]
机构
[1] Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, Minist Educ, Changsha 410075, Hunan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Metro train transmission system; Bearing; Impact interference; Feature enhancement; Incipient fault diagnosis; LOCAL MEAN DECOMPOSITION; EMPIRICAL MODE DECOMPOSITION; MAGNET SYNCHRONOUS MOTORS; SPARSE REPRESENTATION; NOISE; VIBRATION; SPECTRUM; VMD; ALGORITHM; KURTOGRAM;
D O I
10.1016/j.isatra.2024.01.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diagnosis of incipient faults of metro train bearings is a difficult problem under the double masking of strong wheel-rail impact interference and background noise. A novel feature extraction method using improved complementary complete local mean decomposition with adaptive noise (ICCELMDAN) and mixture correntropybased adaptive feature enhancement (AFE) is proposed in this paper. The ICCELMDAN method uses a proposed complementary adaptive noise-assisted iterative sifting method to improve its anti-mixing and antisplitting performance, and then can extract the complete feature from faulty bearing signals under strong background noise. The AFE method adaptively obtains the optimal parameters of mixture correntropy (MC) by employing a newly developed fault energy of mixture correntropy as the objective function in the marine predators algorithm (MPA), and can enhance the weak fault characteristic signal under strong wheel-rail impact interferences. The proposed method effectively combines the complete feature extraction capability of ICCELMDAN and the powerful feature enhancement capability of AFE, which can accurately diagnose the weak faults of metro train bearings under strong wheel-rail impact interferences in simulated and practical scenarios. Furthermore, it outperforms the existing methods in completeness of feature extraction, diagnosis accuracy and robustness from the comparative studies.
引用
收藏
页码:403 / 438
页数:36
相关论文
empty
未找到相关数据