SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and YOLOv5-Based Semantic Information

被引:12
作者
Cong, Peichao [1 ]
Li, Jiaxing [1 ]
Liu, Junjie [1 ]
Xiao, Yixuan [1 ]
Zhang, Xin [1 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Mech & Automot Engn, Liuzhou 545006, Peoples R China
关键词
dynamic environments; RGB-D VSLAM; YOLOv5; semantic segmentation; LOCALIZATION; VERSATILE; TRACKING; ROBUST;
D O I
10.3390/s24072102
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Simultaneous localisation and mapping (SLAM) is crucial in mobile robotics. Most visual SLAM systems assume that the environment is static. However, in real life, there are many dynamic objects, which affect the accuracy and robustness of these systems. To improve the performance of visual SLAM systems, this study proposes a dynamic visual SLAM (SEG-SLAM) system based on the orientated FAST and rotated BRIEF (ORB)-SLAM3 framework and you only look once (YOLO)v5 deep-learning method. First, based on the ORB-SLAM3 framework, the YOLOv5 deep-learning method is used to construct a fusion module for target detection and semantic segmentation. This module can effectively identify and extract prior information for obviously and potentially dynamic objects. Second, differentiated dynamic feature point rejection strategies are developed for different dynamic objects using the prior information, depth information, and epipolar geometry method. Thus, the localisation and mapping accuracy of the SEG-SLAM system is improved. Finally, the rejection results are fused with the depth information, and a static dense 3D mapping without dynamic objects is constructed using the Point Cloud Library. The SEG-SLAM system is evaluated using public TUM datasets and real-world scenarios. The proposed method is more accurate and robust than current dynamic visual SLAM algorithms.
引用
收藏
页数:30
相关论文
共 41 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Dense 3D SLAM in Dynamic Scenes Using Kinect [J].
Bakkay, Mohamed Chafik ;
Arafa, Majdi ;
Zagrouba, Ezzeddine .
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 :121-129
[3]   DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM [J].
Bescos, Berta ;
Campos, Carlos ;
Tardos, Juan D. ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) :5191-5198
[4]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[5]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[6]   An Overview on Visual SLAM: From Tradition to Semantic [J].
Chen, Weifeng ;
Shang, Guangtao ;
Ji, Aihong ;
Zhou, Chengjun ;
Wang, Xiyang ;
Xu, Chonghui ;
Li, Zhenxiong ;
Hu, Kai .
REMOTE SENSING, 2022, 14 (13)
[7]   SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information [J].
Cheng, Shuhong ;
Sun, Changhe ;
Zhang, Shijun ;
Zhang, Dianfan .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[8]   Simultaneous localization and mapping: Part I [J].
Durrant-Whyte, Hugh ;
Bailey, Tim .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (02) :99-108
[9]   Direct Sparse Odometry [J].
Engel, Jakob ;
Koltun, Vladlen ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) :611-625
[10]   LSD-SLAM: Large-Scale Direct Monocular SLAM [J].
Engel, Jakob ;
Schoeps, Thomas ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 :834-849