OPTIMAL ERROR BOUNDS ON THE EXPONENTIAL WAVE INTEGRATOR FOR THE NONLINEAR SCHRODINGER EQUATION WITH LOW REGULARITY POTENTIAL AND NONLINEARITY

被引:6
作者
Bao, Weizhu [1 ]
Wang, Chushan [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
关键词
nonlinear Schrodinger equation; exponential wave integrator; low regularity potential; low regularity nonlinearity; optimal error bound; extended Fourier pseudospectral method; GROSS-PITAEVSKII EQUATION; GALERKIN APPROXIMATIONS; NUMERICAL-SOLUTION; SPLITTING SCHEMES; DYNAMICS; SYSTEM; TIME;
D O I
10.1137/23M155414X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish optimal error bounds for the exponential wave integrator (EWI) applied to the nonlinear Schrodinger equation (NLSE) with L-infinity-potential and/or locally Lipschitz nonlinearity under the assumption of H-2-solution of the NLSE. For the semidiscretization in time by the first-order Gautschi-type EWI, we prove an optimal L-2-error bound at O(tau) with tau>0 being the time step size, together with a uniform H-2-bound of the numerical solution. For the full-discretization scheme obtained by using the Fourier spectral method in space, we prove an optimal L-2-error bound at O(tau+h(2)) without any coupling condition between tau and h, where h > 0 is the mesh size. In addition, for W-1,W-4-potential and a little stronger regularity of the nonlinearity, under the assumption of H-3-solution, we obtain an optimal H-1-error bound. Furthermore, when the potential is of low regularity but the nonlinearity is sufficiently smooth, we propose an extended Fourier pseudospectral method which has the same error bound as the Fourier spectral method, while its computational cost is similar to the standard Fourier pseudospectral method. Our new error bounds greatly improve the existing results for the NLSE with low regularity potential and/or nonlinearity. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.
引用
收藏
页码:93 / 118
页数:26
相关论文
共 54 条
[1]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[2]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[3]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[4]  
Astrakharchik G. E., 2018, Physical Review A, V98, DOI 10.1103/PhysRevA.98.013631
[5]  
BAO W, 2003, COMMUN MATH SCI, V1, P809, DOI DOI 10.4310/CMS.2003.V1.N4.A8
[6]   IMPROVED UNIFORM ERROR BOUNDS OF THE TIME-SPLITTING METHODS FOR THE LONG-TIME (NONLINEAR) SCHRODINGER EQUATION [J].
Bao, W. E. I. Z. H. U. ;
Cai, Y. O. N. G. Y. O. N. G. ;
Feng, Y. U. E. .
MATHEMATICS OF COMPUTATION, 2023, 92 (341) :1109-1139
[7]   ERROR ESTIMATES OF THE TIME-SPLITTING METHODS FOR THE NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATION WITH SEMI-SMOOTH NONLINEARITY [J].
Bao, Weizhu ;
Wang, Chushan .
MATHEMATICS OF COMPUTATION, 2024, 93 (348) :1599-1631
[8]   Regularized Numerical Methods for the Nonlinear Schrodinger Equation with Singular Nonlinearity [J].
Bao, Weizhu ;
Feng, Yue ;
Ma, Ying .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (03) :646-670
[9]   Error estimates of local energy regularization for the logarithmic Schrodinger equation [J].
Bao, Weizhu ;
Carles, Remi ;
Su, Chunmei ;
Tang, Qinglin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (01) :101-136
[10]   Regularized numerical methods for the logarithmic Schrodinger equation [J].
Bao, Weizhu ;
Carles, Remi ;
Su, Chunmei ;
Tang, Qinglin .
NUMERISCHE MATHEMATIK, 2019, 143 (02) :461-487