A standardized image processing and data quality platform for rodent fMRI

被引:4
|
作者
Desrosiers-Gregoire, Gabriel [1 ,2 ]
Devenyi, Gabriel A. [1 ,3 ]
Grandjean, Joanes [4 ,5 ]
Chakravarty, M. Mallar [1 ,2 ,3 ,6 ]
机构
[1] Douglas Mental Hlth Univ Inst, Cerebral Imaging Ctr, Computat Brain Anat Lab, Montreal, PQ, Canada
[2] McGill Univ, Integrated Program Neurosci, Montreal, PQ, Canada
[3] McGill Univ, Dept Psychiat, Montreal, PQ, Canada
[4] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, Dept Med Imaging, Nijmegen, Netherlands
[6] McGill Univ, Dept Biol & Biomed Engn, Montreal, PQ, Canada
基金
荷兰研究理事会; 加拿大健康研究院;
关键词
FUNCTIONAL CONNECTIVITY; MOTION ARTIFACT; BRAIN; PROTOCOL; SEGMENTATION; NETWORKS; ATLAS;
D O I
10.1038/s41467-024-50826-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Functional magnetic resonance imaging in rodents holds great potential for advancing our understanding of brain networks. Unlike the human community, there remains no standardized resource in rodents for image processing, analysis and quality control, posing significant reproducibility limitations. Our software platform, Rodent Automated Bold Improvement of EPI Sequences, is a pipeline designed to address these limitations for preprocessing, quality control, and confound correction, along with best practices for reproducibility and transparency. We demonstrate the robustness of the preprocessing workflow by validating performance across multiple acquisition sites and both mouse and rat data. Building upon a thorough investigation into data quality metrics across acquisition sites, we introduce guidelines for the quality control of network analysis and offer recommendations for addressing issues. Taken together, this software platform will allow the emerging community to adopt reproducible practices and foster progress in translational neuroscience. There is a need for a standardized pipeline to process rodent fMRI images. Here, the authors present a platform for preprocessing, quality control and confound correction, and demonstrate its robustness across multiple sites and both mouse and rat data.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] MULTI-VOXEL PATTERN ANALYSIS OF fMRI DATA DURING SELFAND OTHER-REFERENTIAL PROCESSING
    Knyazev, G. G.
    Savostyanov, A. N.
    Rudych, P. D.
    Bocharov, A. V.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2023, 73 (02) : 242 - 255
  • [32] A Survey on Compression Domain Image and Video Data Processing and Analysis Techniques
    Dong, Yuhang
    Pan, W. David
    INFORMATION, 2023, 14 (03)
  • [33] Generating Large Labeled Data Sets for Laparoscopic Image Processing Tasks Using Unpaired Image-to-Image Translation
    Pfeiffer, Micha
    Funke, Isabel
    Robu, Maria R.
    Bodenstedt, Sebastian
    Strenger, Leon
    Engelhardt, Sandy
    Ross, Tobias
    Clarkson, Matthew J.
    Gurusamy, Kurinchi
    Davidson, Brian R.
    Maier-Hein, Lena
    Riediger, Carina
    Welsch, Thilo
    Weitz, Juergen
    Speidel, Stefanie
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT V, 2019, 11768 : 119 - 127
  • [34] Changes in neuronal correlates of body image processing by means of cognitive-behavioural body image therapy for eating disorders: a randomized controlled fMRI study
    Vocks, S.
    Schulte, D.
    Busch, M.
    Groenemeyer, D.
    Herpertz, S.
    Suchan, B.
    PSYCHOLOGICAL MEDICINE, 2011, 41 (08) : 1651 - 1663
  • [35] Application and further development of advanced image processing algorithms for automated analysis of serial section image data
    Simmons, J. P.
    Chuang, P.
    Comer, M.
    Spowart, J. E.
    Uchic, M. D.
    De Graef, M.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (02)
  • [36] Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS)
    Frederick, Blaise deB.
    Nickerson, Lisa D.
    Tong, Yunjie
    NEUROIMAGE, 2012, 60 (03) : 1913 - 1923
  • [37] Platform for Automated Real-Time High Performance Analytics on Medical Image Data
    Allen, William J.
    Gabr, Refaat E.
    Tefera, Getaneh B.
    Pednekar, Amol S.
    Vaughn, Matthew W.
    Narayana, Ponnada A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) : 318 - 324
  • [38] Cric searchable image database as a public platform for conventional pap smear cytology data
    Rezende, Mariana T.
    Silva, Raniere
    Bernardo, Fagner de O.
    Tobias, Alessandra H. G.
    Oliveira, Paulo H. C.
    Machado, Tales M.
    Costa, Caio S.
    Medeiros, Fatima N. S.
    Ushizima, Daniela M.
    Carneiro, Claudia M.
    Bianchi, Andrea G. C.
    SCIENTIFIC DATA, 2021, 8 (01)
  • [39] Data Processing and Presentation for a Personalised, Image-driven Medical Graphical Avatar
    de Ridder, Michael
    Bi, Lei
    Constantinescu, Liviu
    Kim, Jinman
    Feng, David Dagan
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 4183 - 4186
  • [40] Detection of Lung Cancer Stages using Image Processing and Data Classification Techniques
    Katre, Pooja R.
    Thakare, Anuradha
    2017 2ND INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2017, : 402 - 404