共 44 条
- [1] Adalsteinsson D., Sethian J.A., A fast level set method for propagating interfaces, J. Comput. Phys., 118, 2, pp. 269-277, (1995)
- [2] Biswas S., Hazra R., State-of-the-art level set models and their performances in image segmentation: A decade review, Arch. Comput. Methods Eng., (2021)
- [3] Chopp D., Computing minimal surfaces via level set curvature flow, J. Comput. Phys., 106, 1, pp. 77-91, (1993)
- [4] Deiterding R., Domingues M.O., Schneider K., Multiresolution analysis as a criterion for effective dynamic mesh adaptation – A case study for euler equations in the samr framework amroc, Comput. Fluids, 205, (2020)
- [5] Don W.S., Li P., Wong K.Y., Gao Z., Improved symmetry property of high order weighted essentially non-oscillatory finite difference schemes for hyperbolic conservation laws, Adv. Appl. Math. Mech., 10, 6, pp. 1418-1439, (2018)
- [6] Don W.S., Li D.M., Gao Z., Wang B.S., A characteristic-wise alternative weno-z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form, J. Sci. Comput., 82, 2, pp. 1-24, (2020)
- [7] Fedkiw R.P., Aslam T., Merriman B., Osher S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (The ghost fluid method), J. Comput. Phys., 152, 2, pp. 457-492, (1999)
- [8] Fleischmann N., Adami S., Adams N.A., Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes, Comput. Fluids, 189, pp. 94-107, (2019)
- [9] Fleischmann N., Adami S., Adams N.A., A shock-stable modification of the hllc riemann solver with reduced numerical dissipation, J. Comput. Phys., 423, (2020)
- [10] Fleischmann N., Adami S., Hu X.Y., Adams N.A., A low dissipation method to cure the grid-aligned shock instability, J. Comput. Phys., 401, (2020)