PREDICTION OF MECHANICAL PROPERTIES OF COMPOSITE MATERIALS BASED ON CONVOLUTIONAL NEURAL NETWORK-LONG AND SHORT-TERM MEMORY NEURAL NETWORK

被引:0
|
作者
Huang, P. [1 ]
Dong, J. C. [1 ]
Han, X. C. [1 ]
Qi, Y. P. [1 ]
Xiao, Y. M. [1 ]
Leng, H. Y. [1 ]
机构
[1] Xinjiang Univ, Urumqi 830000, Xinjiang, Peoples R China
来源
METALURGIJA | 2024年 / 63卷 / 3-4期
关键词
Artificial neural networks; Deep learning; Performance prediction;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Convolutional neural networks (CNNs) have the advantage of processing complex images and extracting feature information from the images, while long and short term memory networks (LSTMs) are good at processing data with sequential features. In this paper, based on the deep material network, we propose to apply the CNN-LSTM neural network model to the prediction of mechanical properties of carbon fibre composites. Then the experimental results are compared with the model prediction results, and the results show that the CNN-LSTM prediction of the mechanical properties of carbon fibre composites is within 5% of the corresponding tensile mechanical experimental results, which proves the accuracy of the CNN-LSTM neural network model in the prediction of the mechanical properties of carbon fibre composites.
引用
收藏
页码:369 / 372
页数:4
相关论文
共 50 条
  • [1] Sentiment analysis of tweets using a unified convolutional neural network-long short-term memory network model
    Umer, Muhammad
    Ashraf, Imran
    Mehmood, Arif
    Kumari, Saru
    Ullah, Saleem
    Sang Choi, Gyu
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (01) : 409 - 434
  • [2] Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model
    Baghbani, Asiye
    Bouguila, Nizar
    Patterson, Zachary
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (02) : 1331 - 1340
  • [3] A hybrid convolutional neural network with long short-term memory for statistical arbitrage
    Eggebrecht, P.
    Luetkebohmert, E.
    QUANTITATIVE FINANCE, 2023, 23 (04) : 595 - 613
  • [4] A Driver Fatigue Detection Framework with Convolutional Neural Network and Long Short-Term Memory Network
    Bao, Ruyi
    Hameed, Nazia
    Walker, Adam
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 283 - 297
  • [5] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [6] Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory
    Chen, Chen
    Zhu, Weixing
    Steibel, Juan
    Siegford, Janice
    Wurtz, Kaitlin
    Han, Junjie
    Norton, Tomas
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 169
  • [7] CLAP: Gas Saturation Prediction in Shale Gas Reservoir Using a Cascaded Convolutional Neural Network-Long Short-Term Memory Model with Attention Mechanism
    Yang, Xuefeng
    Zhang, Chenglin
    Zhao, Shengxian
    Zhou, Tianqi
    Zhang, Deliang
    Shi, Zhensheng
    Liu, Shaojun
    Jiang, Rui
    Yin, Meixuan
    Wang, Gaoxiang
    Zhang, Yan
    PROCESSES, 2023, 11 (09)
  • [8] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [9] An Evaporation Duct Height Prediction Model Based on a Long Short-Term Memory Neural Network
    Zhao, Wenpeng
    Zhao, Jun
    Li, Jincai
    Zhao, Dandan
    Huang, Lilan
    Zhu, Junxing
    Lu, Jingze
    Wang, Xiang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (11) : 7795 - 7804
  • [10] A Convolutional Long Short-Term Memory-Based Neural Network for Epilepsy Detection From EEG
    Tawhid, Md Nurul Ahad
    Siuly, Siuly
    Li, Tianning
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71