An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

被引:1
|
作者
Gonzalez, Rodrigo A. [1 ]
Cedeno, Angel L. [2 ,3 ]
Coronel, Maria [3 ]
Aguero, Juan C. [2 ,3 ]
Rojas, Cristian R. [4 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[2] Univ Tecn Federico Santa Maria, Elect Engn Dept, Valparaiso, Chile
[3] Adv Ctr Elect & Elect Engn AC3E, Valparaiso, Chile
[4] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
瑞典研究理事会;
关键词
System identification; continuous-time systems; event-based sampling; expectation-maximization; MODELS;
D O I
10.1016/j.ifacol.2023.10.1771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
引用
收藏
页码:4204 / 4209
页数:6
相关论文
共 50 条
  • [41] Continuous-time frequency domain subspace system identification
    VanOverschee, P
    DeMoor, B
    SIGNAL PROCESSING, 1996, 52 (02) : 179 - 194
  • [42] Continuous-Time System Identification using Binary Measurements
    Pouliquen, Mathieu
    Goudjil, Abdelhak
    Gehan, Olivier
    Pigeon, Eric
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3787 - 3792
  • [43] CONTINUOUS-TIME APPROACHES TO SYSTEM-IDENTIFICATION - A SURVEY
    UNBEHAUEN, H
    RAO, GP
    AUTOMATICA, 1990, 26 (01) : 23 - 35
  • [44] Subspace identification for continuous-time errors-in-variables model from sampled data
    Wu, Ping
    Yang, Chun-jie
    Song, Zhi-huan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (08): : 1177 - 1186
  • [45] An approach to continuous-time model identification from non-uniformly sampled data
    Huselstein, E
    Garnier, H
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 622 - 623
  • [46] Subspace identification for continuous-time errors-in-variables model from sampled data
    Ping Wu
    Chun-jie Yang
    Zhi-huan Song
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1177 - 1186
  • [47] IDENTIFICATION OF LINEAR AND NONLINEAR CONTINUOUS-TIME MODELS FROM SAMPLED-DATA SETS
    TSANG, KM
    BILLINGS, SA
    JOURNAL OF SYSTEMS ENGINEERING, 1995, 5 (04): : 249 - 267
  • [48] A linear regression approach to state-space subspace system identification
    Jansson, M
    Wahlberg, B
    SIGNAL PROCESSING, 1996, 52 (02) : 103 - 129
  • [49] Constrained state-space system identification with application to structural dynamics
    Sjoevall, Per
    McKelvey, Tomas
    Abrahamsson, Thomas
    AUTOMATICA, 2006, 42 (09) : 1539 - 1546
  • [50] Optimal input design for continuous-time system identification: application to fractional systems
    Abrashov, Sergey
    Malti, Rachid
    Moze, Mathieu
    Moreau, Xavier
    Guillemard, Franck
    IFAC PAPERSONLINE, 2015, 48 (28): : 1307 - 1312