An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

被引:1
|
作者
Gonzalez, Rodrigo A. [1 ]
Cedeno, Angel L. [2 ,3 ]
Coronel, Maria [3 ]
Aguero, Juan C. [2 ,3 ]
Rojas, Cristian R. [4 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[2] Univ Tecn Federico Santa Maria, Elect Engn Dept, Valparaiso, Chile
[3] Adv Ctr Elect & Elect Engn AC3E, Valparaiso, Chile
[4] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
瑞典研究理事会;
关键词
System identification; continuous-time systems; event-based sampling; expectation-maximization; MODELS;
D O I
10.1016/j.ifacol.2023.10.1771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
引用
收藏
页码:4204 / 4209
页数:6
相关论文
共 50 条
  • [31] MULTIVARIABLE IDENTIFICATION OF CONTINUOUS-TIME FRACTIONAL SYSTEM
    Thomassin, Magalie
    Malti, Rachid
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1187 - 1195
  • [32] A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem
    Li, Junhong
    Zheng, Wei Xing
    Gu, Juping
    Hua, Liang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (06) : 2374 - 2393
  • [33] Non-minimal state-space model-based continuous-time model predictive control with constraints
    Wang, Liuping
    Young, Peter C.
    Gawthrop, Peter J.
    Taylor, C. James
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (06) : 1122 - 1137
  • [34] Component system identification and state-space model synthesis
    Sjovall, Per
    Abrahamsson, Thomas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (07) : 2697 - 2714
  • [35] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [36] Subspace-based state-space system identification
    Viberg, M
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (01) : 23 - 37
  • [37] Subspace-based state-space system identification
    Mats Viberg
    Circuits, Systems and Signal Processing, 2002, 21 : 23 - 37
  • [38] Global Least Squares for Time-Domain System Identification of State-Space Models
    Harker, Matthew
    Rath, Gerhard
    2018 7TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2018, : 590 - 595
  • [39] Kernel-based continuous-time system identification: A parametric approximation
    Scandella, Matteo
    Moreschini, Alessio
    Parisini, Thomas
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1492 - 1497
  • [40] A Subalgebraic Procedure for System Identification of a Continuous-Time Polynomial System
    van Schuppen, Jan H.
    Xi, Kaihua
    Nemcova, Jana
    IFAC PAPERSONLINE, 2018, 51 (15): : 395 - 400