An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

被引:1
|
作者
Gonzalez, Rodrigo A. [1 ]
Cedeno, Angel L. [2 ,3 ]
Coronel, Maria [3 ]
Aguero, Juan C. [2 ,3 ]
Rojas, Cristian R. [4 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[2] Univ Tecn Federico Santa Maria, Elect Engn Dept, Valparaiso, Chile
[3] Adv Ctr Elect & Elect Engn AC3E, Valparaiso, Chile
[4] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
瑞典研究理事会;
关键词
System identification; continuous-time systems; event-based sampling; expectation-maximization; MODELS;
D O I
10.1016/j.ifacol.2023.10.1771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
引用
收藏
页码:4204 / 4209
页数:6
相关论文
共 50 条
  • [1] Identifying Lebesgue-sampled Continuous-time Impulse Response Models: A Kernel-based Approach
    Gonzalez, Rodrigo A.
    Tiels, Koen
    Oomen, Tom
    IFAC PAPERSONLINE, 2023, 56 (02): : 4198 - 4203
  • [2] Stochastic theory of continuous-time state-space identification
    Johansson, R
    Verhaegen, M
    Chou, CT
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) : 41 - 51
  • [3] An integral architecture for identification of continuous-time state-space LPV models
    Mejari, Manas
    Mavkov, Bojan
    Forgione, Marco
    Piga, Dario
    IFAC PAPERSONLINE, 2021, 54 (08): : 7 - 12
  • [4] Direct identification of continuous-time LPV state-space models via an integral architecture
    Mejari, Manas
    Mavkov, Bojan
    Forgione, Marco
    Piga, Dario
    AUTOMATICA, 2022, 142
  • [5] Continuous-time Hammerstein system identification from sampled data
    Greblicki, Wlodzimierz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) : 1195 - 1200
  • [6] Kernel Regression-Based State-Space Estimation of Continuous-Time Dynamic Systems From Noisy Sampled State Data
    Kim, Taekyoo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4757 - 4764
  • [7] A Continuous-Time Linear System Identification Method for Slowly Sampled Data
    Marelli, Damian
    Fu, Minyue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2521 - 2533
  • [8] EM-based identification of continuous-time ARMA Models from irregularly sampled data
    Chen, Fengwei
    Aguero, Juan C.
    Gilson, Marion
    Garnier, Hugues
    Liu, Tao
    AUTOMATICA, 2017, 77 : 293 - 301
  • [9] A combined invariant-subspace and subspace identification method for continuous-time state-space models using slowly sampled multi-sine-wave data
    Huang, Chao
    AUTOMATICA, 2022, 140
  • [10] Nuclear Norm Subspace Identification Of Continuous Time State-Space Models
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2018, 51 (01): : 530 - 535