Unraveling the underlying mechanisms of biochemical, physiological, and growth responses of two pea (Pisum sativum L.) cultivars under simulated acid rain-induced oxidative stress

被引:1
|
作者
Prakash, Jigyasa [1 ]
Agrawal, Shashi Bhushan [1 ]
Agrawal, Madhoolika [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Bot, Lab Air Pollut & Global Climate Change, Varanasi 221005, India
关键词
Acid rain; Pea cultivars; Reactive oxygen species; Enzymatic antioxidants; Non-enzymatic antioxidants; Ultrastructure; Biomass accumulation; UV-B RADIATION; CHLOROPHYLL FLUORESCENCE; CHEMICAL-COMPOSITION; PHOTOSYNTHESIS; SUPEROXIDE; LEAVES; PLANTS; PRECIPITATION; GLUTATHIONE; ASCORBATE;
D O I
10.1007/s12298-024-01494-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The current experiment was designed to evaluate the ramifications of simulated acid rain (SAR) on two pea (Pisum sativum L.) cultivars, Kashi Samridhi (Samridhi) and Kashi Nandini (Nandini), to decipher the intraspecific variations in defence mechanism considering the current scenario of rapid anthropogenic activities leading to increase in rain acidity. The pea cultivars were subjected to SAR of pH 7 (Control), 5.6, 5.0, and 4.5 under field conditions. SAR increased active oxygen species and malondialdehyde content due to increased lipid peroxidation in both cultivars; however, the increment intensity was more remarkable in Samridhi at the later growth stage. Ascorbic acid, thiol, and flavonoids were significantly increased in cultivar Nandini, along with increased peroxidase and superoxide dismutase activities. Total phenolics, glutathione reductase, and ascorbate peroxidase activities were enhanced considerably in Samridhi than in Nandini under SAR treatments. Higher stomatal density and stomatal size in Samridhi prompted greater acidic particles influx which further damaged the chloroplast and mitochondria. The present study concludes that cultivar Nandini is more proficient in inducing defence responses by elevating non-enzymatic antioxidants than Samridhi. Non-enzymatic linked defence mechanisms are more metabolically expensive, leading to less biomass accumulation in Nandini. The study depicted that innate defence responses, particularly the role of non-enzymatic antioxidants, governed the sensitivity level of cultivars towards SAR stress. Further, findings also contribute to bridging the knowledge gap regarding the responses of tropical and subtropical crops to acid rain.
引用
收藏
页码:1329 / 1351
页数:23
相关论文
共 35 条
  • [1] POWDERY MILDEW INDUCED PHYSIOLOGICAL AND BIOCHEMICAL CHANGES IN PEA (Pisum sativum L.)
    Azmat, Muhammad Abubakkar
    Khan, Asif Ali
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 51 (04): : 893 - 899
  • [2] Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress
    Hattab, Sabrine
    Dridi, Boutheina
    Chouba, Lassad
    Kheder, Mohamed Ben
    Bousetta, Hamadi
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2009, 21 (11) : 1552 - 1556
  • [3] Oxidative Stress in Pea (Pisum sativum L.)-Rhizobia Symbiosis is Induced under Conditions of Salt Stress
    Abdi, N.
    Ltaief, B.
    Hemissi, I
    Bouraoui, M.
    Sifi, B.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2019, 21 (04): : 957 - 968
  • [4] Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress
    Sabrine Hattab
    Boutheina Dridi
    Lassad Chouba
    Mohamed Ben Kheder
    Hamadi Bousetta
    Journal of Environmental Sciences, 2009, (11) : 1552 - 1556
  • [5] Elucidating the Ramifications of Simulated Acid Rain on Palak (Beta vulgaris L.) Cultivars: Insights from Morphological, Physiological, Biochemical and Quality Analyses
    Prakash, Jigyasa
    Agrawal, Shashi Bhushan
    Agrawal, Madhoolika
    WATER AIR AND SOIL POLLUTION, 2024, 235 (09)
  • [6] Physiological and Biochemical Characterization of the GABA Shunt Pathway in Pea (Pisum sativum L.) Seedlings under Drought Stress
    AL-Quraan, Nisreen A.
    Al-Ajlouni, Zakaria, I
    Qawasma, Nima F.
    HORTICULTURAE, 2021, 7 (06)
  • [7] Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea (Pisum sativum L.) under drought stress
    Ishfaq, Aneeza
    Haidri, Irfan
    Shafqat, Usman
    Khan, Imran
    Iqbal, Muhammad
    Mahmood, Faisal
    Hassan, Muhammad Umair
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2025, 31 (01) : 11 - 26
  • [8] Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): Biochemical changes and translocation of essential nutrients
    Tiwari, K. K.
    Dwivedi, S.
    Singh, N. K.
    Rai, U. N.
    Tripathi, R. D.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2009, 30 (03) : 389 - 394
  • [9] Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress
    Panda, Sanjib Kumar
    Matsumoto, Hideki
    BIOMETALS, 2010, 23 (04) : 753 - 762
  • [10] Sodium Chloride (NaCl)-Induced Physiological Alteration and Oxidative Stress Generation in Pisum sativum (L.): A Toxicity Assessment
    Alharbi, Khadiga
    Al-Osaimi, Areej Ahmed
    Alghamdi, Budour A.
    ACS OMEGA, 2022, 7 (24): : 20819 - 20832