NAIF: A novel artificial intelligence-based tool for accurate diagnosis of stage F3/F4 liver fibrosis in the general adult population, validated with three external datasets

被引:1
|
作者
Hassoun, Samir [1 ]
Bruckmann, Chiara [1 ]
Ciardullo, Stefano [2 ,3 ]
Perseghin, Gianluca [2 ,3 ]
Marra, Fabio [4 ]
Curto, Armando [4 ]
Arena, Umberto [4 ]
Broccolo, Francesco [5 ]
Di Gaudio, Francesca [1 ,6 ]
机构
[1] Azienda Osped Villa Sofia Cervello, Unita Operativa Ctr Controllo Qual & Rischio Chim, Viale Strasburgo 233, I-90146 Palermo, Italy
[2] Univ Milano Bicocca, Dept Med & Surg, Via Modigliani 10, I-20900 Monza, Italy
[3] Dept Med & Rehabil, Policlin Monza, Via Modigliani 10, I-20900 Monza, Italy
[4] Univ Florence, Dipartimento Med Sperimentale & Clin, Largo Giovanni Alessandro Brambilla 3, I-50134 Florence, Italy
[5] Univ Salento, Dept Expt Med, I-73100 Lecce, Italy
[6] PROMISE Promot Hlth Maternal Childhood Internal &, Piazza Clin 2, I-90127 Palermo, Italy
关键词
AI diagnostic tools; Clinical decision support; Liver fibrosis prediction; Machine learning; Noninvasive diagnostic methods; External validation; BIOPSY; FIB-4;
D O I
10.1016/j.ijmedinf.2024.105373
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: The purpose of this study was to determine the effectiveness of a new AI -based tool called NAIF (NAFLD-AI-Fibrosis) in identifying individuals from the general population with advanced liver fibrosis (stage F3/F4). We compared NAIF's performance to two existing risk score calculators, aspartate aminotransferase-toplatelet ratio index (APRI) and fibrosis -4 (Fib4). Methods: To set up the algorithm for diagnosing severe liver fibrosis (defined as Fibroscan (R) values E >= 9.7 KPa), we used 19 blood biochemistry parameters and two demographic parameters in a group of 5,962 individuals from the NHANES population (2017-2020 pre -pandemic, public database). We then assessed the algorithm's performance by comparing its accuracy, precision, sensitivity, specificity, and F1 score values to those of APRI and Fib4 scoring systems. Results: In a kept -out sub dataset of the NHANES population, NAIF achieved a predictive precision of 72 %, a sensitivity of 61 %, and a specificity of 77 % in correctly identifying adults (aged 18-79 years) with severe liver fibrosis. Additionally, NAIF performed well when tested with two external datasets of Italian patients with a Fibroscan (R) score E >= 9.7 kPa, and with an external dataset of patients with diagnosis of severe liver fibrosis through biopsy. Conclusions: The results of our study suggest that NAIF, using routinely available parameters, outperforms in sensitivity existing scoring methods (Fib4 and APRI) in diagnosing severe liver fibrosis, even when tested with external validation datasets. NAIF uses routinely available parameters, making it a promising tool for identifying individuals with advanced liver fibrosis from the general population. Word count abstract: 236.
引用
收藏
页数:8
相关论文
empty
未找到相关数据