Development of Particle and Grain Uniformity in High-Ductility Al-Zn-Mg Alloys with the Addition of Mg and Cu

被引:2
作者
Choi, K. M. [1 ]
Lee, S. J. [1 ]
Bae, D. H. [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Al-Zn-Mg-(Cu) alloy; Particles; Grain size; Uniformity; Ductility; IMPROVED THERMOMECHANICAL TREATMENT; MECHANICAL-PROPERTIES; ALUMINUM-ALLOYS; LOCALIZED CORROSION; ELECTRON-MICROSCOPY; REFINEMENT; STRENGTH; BEHAVIOR; SIZE; MICROSTRUCTURE;
D O I
10.1007/s12540-024-01684-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ductility of Al-Zn-Mg-(Cu) alloys was investigated by the microstructure uniformity following the addition of Cu and Mg elements. In the case of Cu-added alloy, additional particles, containing Cu elements, were formed with coarse and irregular sizes. These particles were tens of micrometers long existed along the grain boundaries and were retained even after homogenization. Such a nonuniform particle size distribution could lead to inhomogeneous grain structures because of irregular particle-stimulated nucleation. However, Mg-added alloy has fine and spherical particles with uniform size distribution. While on the deformation, strain energy, such as dislocation, had been stored along the grain boundaries, hence the nonuniform grain-size distribution inhibited uniform deformation during tensile deformation. Furthermore, lower plasticity has occurred from the microvoid including Cu-containing particles, which can induce the unexpected crack initiation. To achieve the high ductility of Al alloy, homogeneously distributed grains and grain boundaries should have existed to improve uniform deformation by the addition of an Mg solute and low Cu content.
引用
收藏
页码:2734 / 2744
页数:11
相关论文
共 47 条
[1]   Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J].
Birbilis, N. ;
Cavanaugh, M. K. ;
Buchheit, R. G. .
CORROSION SCIENCE, 2006, 48 (12) :4202-4215
[2]   Grain refinement by Al-Ti-B alloys in aluminium melts: a study of the mechanisms of poisoning by zirconium [J].
Bunn, AM ;
Schumacher, P ;
Kearns, MA ;
Boothroyd, CB ;
Greer, AL .
MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (10) :1115-1123
[3]   Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys [J].
Chemin, Aline ;
Marques, Denys ;
Bisanha, Leandro ;
Motheo, Artur de Jesus ;
Bose Filho, Waldek Wladimir ;
Figueiredo Ruchert, Cassius Olivio .
MATERIALS & DESIGN, 2014, 53 :118-123
[4]   Hole Expansion Characteristics of W-Tempered 7075 Aluminum Alloy Sheet in Comparison with Peak Aged T6 Tempered Alloy Sheet [J].
Choi, Yumi ;
Lee, Jinwoo ;
Bong, Hyuk Jong ;
Lee, Myoung-Gyu .
METALS AND MATERIALS INTERNATIONAL, 2023, 29 (01) :157-167
[5]   Microstructural dependence of fracture toughness in high-strength 7000 forging alloys [J].
Cvijovic, Z. ;
Rakin, M. ;
Vratnica, M. ;
Cvijovic, I. .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (08) :2115-2129
[6]   The influences of multiscale-sized second-phase particles on fracture behaviour of overaged 7000 alloys [J].
Cvijovic, Z. ;
Vratnica, M. ;
Cvijovic-Alagic, I. .
MESOMECHANICS 2009, 2009, 1 (01) :35-38
[7]   Review on Micro-Alloying and Preparation Method of 7xxx Series Aluminum Alloys: Progresses and Prospects [J].
Dai, Yuxin ;
Yan, Liangming ;
Hao, Jianpeng .
MATERIALS, 2022, 15 (03)
[8]   Recent developments in advanced aircraft aluminium alloys [J].
Dursun, Tolga ;
Soutis, Costas .
MATERIALS & DESIGN, 2014, 56 :862-871
[9]   An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles [J].
Easton, M ;
StJohn, D .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2005, 36A (07) :1911-1920
[10]   Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate [J].
Easton, M. A. ;
StJohn, D. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 486 (1-2) :8-13