Contrast estimation of the Vasicek integrated diffusion process for high-frequency data

被引:0
作者
Yang, Shanchao [1 ]
Li, Zhiyong [1 ,3 ]
Xie, Jiaying [1 ]
Luo, Shuyi [1 ]
Yang, Xin [2 ,4 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, Guilin, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Sci, Guilin, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Peoples R China
[4] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Peoples R China
关键词
Contrast estimator; Integrated process; Optimal sampling interval; Strong consistency; Vasicek diffusion process; PARAMETER-ESTIMATION; NONPARAMETRIC-ESTIMATION;
D O I
10.1080/03610918.2024.2337077
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to study the parameter estimation of the Vasicek integrated diffusion process. Based on the contrast function, the parameter contrast estimators of the Vasicek integrated diffusion process are given, and the mean-square errors of drift parameter estimators are derived, so as to obtain the optimal sampling intervals for the parameter estimators. Then we prove the strong consistency of the contrast estimators by the tail probability exponential inequality of alpha-mixing long-span high-frequency data. In numerical simulation, we investigate the fitting effect of the estimates under different sampling intervals and different sample sizes. The results indicate that using optimal interval sampling can achieve good estimation performance. We use the daily closing price data of CSI 300 index to conduct an empirical analysis and give a logarithmic price prediction model. The analysis results show that the prediction model works well.
引用
收藏
页数:19
相关论文
共 29 条
[1]   How often to sample a continuous-time process in the presence of market microstructure noise [J].
Aït-Sahalia, Y ;
Mykland, PA ;
Zhang, L .
REVIEW OF FINANCIAL STUDIES, 2005, 18 (02) :351-416
[2]  
ARNOLD L, 1974, STOCHASTIC DIFFERENT
[3]  
Baltazar-Larios F., 2000, Contemporary quantitative finance
[4]   Fully nonparametric estimation of scalar diffusion models [J].
Bandi, FM ;
Phillips, PCB .
ECONOMETRICA, 2003, 71 (01) :241-283
[5]   Non linearity and temporal dependence [J].
Chen, Xiaohong ;
Hansen, Lars Peter ;
Carrasco, Marine .
JOURNAL OF ECONOMETRICS, 2010, 155 (02) :155-169
[6]   Parameter estimation for Vasicek model driven by a general Gaussian noise [J].
Chen, Yong ;
Li, Ying ;
Pei, Xingzhi .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (09) :3132-3148
[7]   Nonparametric adaptive estimation for integrated diffusions [J].
Comte, F. ;
Genon-Catalot, V. ;
Rozenholc, Y. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (03) :811-834
[8]   Inference for observations of integrated diffusion processes [J].
Ditlevsen, S ;
Sorensen, M .
SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) :417-429
[9]   Parameter estimation for multivariate diffusion processes with the time inhomogeneously positive semidefinite diffusion matrix [J].
Du, Xiu-Li ;
Lin, Jin-Guan ;
Zhou, Xiu-Qing .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) :11010-11025
[10]   Parameter estimation by contrast minimization for noisy observations of a diffusion process [J].
Favetto, Benjamin .
STATISTICS, 2014, 48 (06) :1344-1370