Isolation performances and optimization of triple quasi-zero stiffness isolators

被引:0
作者
Zhang, Yuntian [1 ]
Zhu, Guangnan [1 ]
Cao, Qingjie [1 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
triple quasi-zero stiffness; vibration isolation; Pareto optimization; force transmissibility; geometrical nonlinear; DISCONTINUOUS OSCILLATOR; VIBRATION ISOLATOR; SMOOTH; DYNAMICS; SYSTEM; STABILIZATION; BEHAVIOR; DESIGN;
D O I
10.1007/s11433-023-2371-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, triple quasi-zero stiffness (QZS) passive vibration isolators whose restoring force curve has a three-stage softening effect are proposed. Multi-coupled SD oscillators with three independent geometrical parameters are used as negative stiffness mechanisms to achieve QZS characteristics at the origin and symmetrical positions on both sides of the origin. Isolation performances of different triple QZS isolators are analyzed to show influences of the selection of QZS regions away from the origin on the range of isolation regions. Pareto optimizations of system parameters are carried out to get a larger range of small restoring force regions and small stiffness regions. Isolation performances of two triple QZS isolators are discussed to show the influence of different Pareto optimization solutions through the comparisons with single and double QZS isolators. Results showed that triple QZS isolators have both the advantages of single and double QZS isolators which results in better isolation performances under both small and large excitation amplitudes. An improvement in isolation performances for triple QZS isolators is found with the decrease in average stiffness due to the appearance of two symmetrical QZS regions away from the origin. Larger displacements of QZS regions away from the origin result in better isolation performances when excitation amplitude is large, and triple QZS characteristics are similar to double QZS isolators at this time. Smaller restoring forces of QZS regions away from the origin lead to better isolation performances when excitation amplitude is small, and triple QZS characteristics are similar to single QZS isolators at this moment. Compared with the decrease in average stiffness, the improvement of isolation performances shows a hysteresis phenomenon due to the difference between static and dynamic characteristics.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A quasi-zero stiffness mechanism with monolithic flexible beams for low-frequency vibration isolation
    Hou, Shuai
    Wei, Jianzheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 210
  • [42] Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
    Zhu, Tao
    Cazzolato, Benjamin
    Robertson, William S. P.
    Zander, Anthony
    JOURNAL OF SOUND AND VIBRATION, 2015, 358 : 48 - 73
  • [43] Analytical analysis of vibration isolation characteristics of quasi-zero stiffness suspension backpack
    Hu, Yue
    Zhang, Haicheng
    Wang, Kai
    Fang, Yiguang
    Ma, Chenghao
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (12) : 4387 - 4397
  • [44] A combined vibration isolation system with quasi-zero stiffness and dynamic vibration absorber
    Xing, Zhao-Yang
    Yang, Xiao-Dong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 256
  • [45] Parametric control of quasi-zero stiffness mechanisms for vibration isolation at near-zero frequencies
    Chang-Myung, Lee
    Evgeny, Karpov
    Vladimir, Goverdovskiy
    Alexey, Larichkin
    Julia, Brovkina
    Alexander, Prokhorov
    JOURNAL OF VIBRATION AND CONTROL, 2025, 31 (7-8) : 1347 - 1358
  • [46] An integrated design of quasi-zero stiffness mechanism
    Ahn, Hyeong-Joon
    Lim, Sung-Hun
    Park, Changkun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (03) : 1071 - 1075
  • [47] A torsion quasi-zero stiffness vibration isolator
    Zhou, Jiaxi
    Xu, Daolin
    Bishop, Steven
    JOURNAL OF SOUND AND VIBRATION, 2015, 338 : 121 - 133
  • [48] Vibration attenuation of high dimensional quasi-zero stiffness floating raft system
    Li, Yingli
    Xu, Daolin
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 126 : 186 - 195
  • [49] Design and test of a quasi-zero stiffness isolator with machinable springs
    Yang, Hanwen
    Zhao, Hongzhe
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 88 : 729 - 741
  • [50] Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness
    Liu, Chaoran
    Yu, Kaiping
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2141 - 2165