MSI: Maximize Support-Set Information for Few-Shot Segmentation

被引:12
作者
Moon, Seonghyeon [1 ]
Sohn, Samuel S. [1 ]
Zhou, Honglu [2 ]
Yoon, Sejong [3 ]
Pavlovic, Vladimir [1 ]
Khan, Muhammad Haris [4 ]
Kapadia, Mubbasir [1 ]
机构
[1] Rutgers State Univ, New Brunswick, NJ 08854 USA
[2] NEC Labs Amer, Princeton, NJ 08540 USA
[3] Coll New Jersey, Ewing, NJ USA
[4] Mohamed Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
关键词
D O I
10.1109/ICCV51070.2023.01765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
FSS (Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract information relevant to the target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves performance by visible margins and leads to faster convergence. Our code and trained models are available at: https://github.com/moonsh/ MSI-Maximize-Support-Set-Information
引用
收藏
页码:19209 / 19219
页数:11
相关论文
共 38 条
[11]  
Kang Dahyun, 2022, P IEEE CVF C COMP VI
[12]   Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [J].
Lang, Chunbo ;
Cheng, Gong ;
Tu, Binfei ;
Han, Junwei .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :8047-8057
[13]  
Li Gen, 2021, P IEEE CVF C COMP VI
[14]   The 1st Challenge on Remote Physiological Signal Sensing (RePSS) [J].
Li, Xiaobai ;
Han, Hu ;
Lu, Hao ;
Niu, Xuesong ;
Yu, Zitong ;
Dantcheva, Antitza ;
Zhao, Guoying ;
Shan, Shiguang .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1274-1281
[15]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[16]  
Liu W., 2022, J GENET GENOMICS, V1, P2
[17]  
Liu Ze, 2021, P INT C COMP VIS ECC
[18]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[19]  
Lu Zhihe, 2021, P INT C COMP VIS ECC
[20]  
Luo WJ, 2016, ADV NEUR IN, V29