MSI: Maximize Support-Set Information for Few-Shot Segmentation

被引:12
作者
Moon, Seonghyeon [1 ]
Sohn, Samuel S. [1 ]
Zhou, Honglu [2 ]
Yoon, Sejong [3 ]
Pavlovic, Vladimir [1 ]
Khan, Muhammad Haris [4 ]
Kapadia, Mubbasir [1 ]
机构
[1] Rutgers State Univ, New Brunswick, NJ 08854 USA
[2] NEC Labs Amer, Princeton, NJ 08540 USA
[3] Coll New Jersey, Ewing, NJ USA
[4] Mohamed Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023) | 2023年
关键词
D O I
10.1109/ICCV51070.2023.01765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
FSS (Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract information relevant to the target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves performance by visible margins and leads to faster convergence. Our code and trained models are available at: https://github.com/moonsh/ MSI-Maximize-Support-Set-Information
引用
收藏
页码:19209 / 19219
页数:11
相关论文
共 38 条
[1]   Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need? [J].
Boudiaf, Malik ;
Kervadec, Hoel ;
Masud, Ziko Imtiaz ;
Piantanida, Pablo ;
Ben Ayed, Ismail ;
Dolz, Jose .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13974-13983
[2]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[3]  
Cho Seokju, 2021, P ADV NEUR INF PROC
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[6]  
Glorot Xavier., 2011, Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR WCP, V15, P315, DOI DOI 10.1002/ECS2.1832
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Hong Sunghwan, 2021, ARXIV211211685
[9]  
Hong Sunghwan, 2022, P EUR C COMP VIS ECC
[10]   Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs [J].
Islam, Md Amirul ;
Kowal, Matthew ;
Jia, Sen ;
Derpanis, Konstantinos G. ;
Bruce, Neil D. B. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :773-781