S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{S}$$\end{document}-preclones and the Galois connection SPol\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{{}^{S}{}\textrm{Pol}}$$\end{document}–SInv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{{}^{S}{}\textrm{Inv}}$$\end{document}, Part I

被引:0
作者
Peter Jipsen [1 ]
Erkko Lehtonen [2 ]
Reinhard Pöschel [3 ]
机构
[1] Chapman University,Faculty of Mathematics
[2] Khalifa University of Science and Technology,Department of Mathematics
[3] TU Dresden,Faculty of Mathematics, Institute of Algebra
关键词
Partially ordered algebra; Preclone; Galois connection; Order-preserving map; Order-reversing map; 08A99; 08A40; 06A15; 06F99;
D O I
10.1007/s00012-024-00863-7
中图分类号
学科分类号
摘要
We consider S-operationsf:An→A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :A^{n} \rightarrow A$$\end{document} in which each argument is assigned a signums∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in S$$\end{document} representing a “property” such as being order-preserving or order-reversing with respect to a fixed partial order on A. The set S of such properties is assumed to have a monoid structure reflecting the behaviour of these properties under the composition of S-operations (e.g., order-reversing composed with order-reversing is order-preserving). The collection of all S-operations with prescribed properties for their signed arguments is not a clone (since it is not closed under arbitrary identification of arguments), but it is a preclone with special properties, which leads to the notion of S-preclone. We introduce S-relationsϱ=(ϱs)s∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho = (\varrho _{s})_{s \in S}$$\end{document}, S-relational clones, and a preservation property ([inline-graphic not available: see fulltext]), and we consider the induced Galois connection SPol\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{S}{}\textrm{Pol}$$\end{document}–SInv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{S}{}\textrm{Inv}$$\end{document}. The S-preclones and S-relational clones turn out to be exactly the closed sets of this Galois connection. We also establish some basic facts about the structure of the lattice of all S-preclones on A.
引用
收藏
相关论文
共 12 条
[1]  
Couceiro M(2005)On closed sets of relational constraints and classes of functions closed under variable substitutions Algebra Universalis 54 149-165
[2]  
Foldes S(2005)Algebraic recognizability of regular tree languages Theor. Comput. Sci. 340 291-321
[3]  
Ésik Z(2010)Characterization of preclones by matrix collections Asian-Eur. J. Math. 3 457-473
[4]  
Weil P(2018)Reflections on and of minor-closed classes of multisorted operations Algebra Universalis 79 405-419
[5]  
Lehtonen E(2002)Galois theory for minors of finite functions Discrete Math. 254 437-185
[6]  
Lehtonen E(1920)Determination of all closed systems of truth tables Bull. Am. Math. Soc. 26 163-93
[7]  
Pöschel R(1921)Introduction to a general theory of elementary propositions Am. J. Math. 43 3-undefined
[8]  
Waldhauser T(1970)Über die funktionale Vollständigkeit in den mehrwertigen Logiken Rozpr. ČSAV Řada Mat. Přir. Věd. Praha 80 undefined-undefined
[9]  
Pippenger N(undefined)undefined undefined undefined undefined-undefined
[10]  
Post EL(undefined)undefined undefined undefined undefined-undefined