Simulation of Fractional Order 2D- Mathematical Model Using α-Fractional Differential Transform Method

被引:0
作者
Thorat, S. N. [1 ]
Ghadle, K. P. [1 ]
Muneshwar, R. A. [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
[2] NES Sci Coll, Dept Math, Nanded 431602, Maharashtra, India
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 01期
关键词
fractional differential transform method; fractional differential equation; conformable fractional differential transform; alpha-fractional derivative; EQUATIONS;
D O I
10.37256/cm.5120242464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will introduce a well-known transformation technique, the modified a-fractional differential transform, to the differential equation of fractional order. We derive some new results with proof using new techniques that never existed before. By using this new technique, we are attempting to solve the nonlinear fractional-order mathematical epidemic model. Furthermore, the fractional epidemic model's solution obtained by using this new technique is correlated with the solution of the same model calculated for a different fractional order by the modified a-fractional differential transform method. Moreover, using the Python software, we can numerically and graphically represent the solution of fractional differential equations.
引用
收藏
页码:685 / 697
页数:13
相关论文
共 28 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Abu Hammad M., 2014, International Journal of Applied Mathematics Research, V3, P214, DOI 10.14419/ijamr.v3i3.2747
[3]  
Abu Hammad M., 2014, Int J Pure Appl Math, V94, P215, DOI DOI 10.12732/IJPAM.V94I2.8
[4]  
Abu Hammad M., 2014, International Journal of Differential Equations and Applications, V13, P177, DOI 10.12732/ijdea.v13i3.1753
[5]   A remark on local fractional calculus and ordinary derivatives [J].
Almeida, Ricardo ;
Guzowska, Malgorzata ;
Odzijewicz, Tatiana .
OPEN MATHEMATICS, 2016, 14 :1122-1124
[6]   Solution of fractional differential equations by using differential transform method [J].
Arikoglu, Aytac ;
Ozkol, Ibrahim .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1473-1481
[7]  
Din A., 2022, Partial Differ. Equ. Appl. Math, V5, P100204, DOI [10.1016/j.padiff.2021.100204, DOI 10.1016/J.PADIFF.2021.100204]
[8]   Optimal Control Problem for a Conformable Fractional Heat Conduction Equation [J].
Eroglu, B. B. Iskender ;
Avci, D. ;
Ozdemir, N. .
ACTA PHYSICA POLONICA A, 2017, 132 (03) :658-662
[9]   Novel Fractional-Order Lagrangian to Describe Motion of Beam on Nanowire [J].
Erturk, V. S. ;
Godwe, E. ;
Baleanu, D. ;
Kumar, P. ;
Asad, J. ;
Jajarmi, A. .
ACTA PHYSICA POLONICA A, 2021, 140 (03) :265-272
[10]   Analytic Solution for the Strongly Nonlinear Multi-Order Fractional Version of a BVP Occurring in Chemical Reactor Theory [J].
Erturk, Vedat Suat ;
Alomari, A. K. ;
Kumar, Pushpendra ;
Murillo-Arcila, Marina .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022