Convergence of the Fourier Series in Meixner-Sobolev Polynomials and Approximation Properties of Its Partial Sums

被引:0
作者
Gadzhimirzaev, R. M. [1 ]
机构
[1] Russian Acad Sci, Dept Math & Comp Sci, Dagestan Fed Res Ctr, Makhachkala 367000, Russia
关键词
Sobolev-type inner product; Fourier series; Meixner polynomial; approximation property; Lebesgue function; RESPECT;
D O I
10.1134/S0001434624030027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the convergence of Fourier series in the polynomial system {m(n,N)(alpha,r)(x)} orthonormal in the sense of Sobolev and generated by the system of modified Meixner polynomials. In particular, we show that the Fourier series of f is an element of W-lp rho N(Omega delta)(r) in this system converges to f pointwise on the grid Omega(delta) as p >= 2. In addition, we study the approximation properties of partial sums of Fourier series in the system {m(n,N)(0,r)(x)}.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 15 条
[1]   Inner products involving differences:: The Meixner-Sobolev polynomials [J].
Area, I ;
Godoy, E ;
Marcellán, F .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2000, 6 (01) :1-31
[2]   An Application of Sobolev Orthogonal Polynomials to the Computation of a Special Hankel Determinant [J].
Barry, Paul ;
Rajkovic, Predrag M. ;
Petkovic, Marko D. .
APPROXIMATION AND COMPUTATION: IN HONOR OF GRADIMIR V. MILOVANOVIC, 2011, 42 :53-+
[3]   DIFFERENCE-EQUATIONS FOR GENERALIZED MEIXNER POLYNOMIALS [J].
BAVINCK, H ;
VANHAERINGEN, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :453-463
[4]   Difference operators with Sobolev type Meixner polynomials as eigenfunctions [J].
Bavinck, H ;
Koekoek, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :163-177
[5]   On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case [J].
Costas-Santos, Roberto S. ;
Soria-Lorente, Anier ;
Vilaire, Jean-Marie .
MATHEMATICS, 2022, 10 (11)
[6]   Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials [J].
Gadzhimirzaev, R. M. .
MATHEMATICAL NOTES, 2019, 106 (3-4) :526-536
[7]   APPROXIMATIVE PROPERTIES OF FOURIER - MEIXNER SUMS [J].
Gadzhimirzaev, R. M. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (01) :23-40
[8]   UNIFORM ASYMPTOTIC APPROXIMATIONS FOR THE MEIXNER-SOBOLEV POLYNOMIALS [J].
Khwaja, S. Farid ;
Olde Daalhuis, A. B. .
ANALYSIS AND APPLICATIONS, 2012, 10 (03) :345-361
[9]   On Sobolev orthogonal polynomials [J].
Marcellan, Francisco ;
Xu, Yuan .
EXPOSITIONES MATHEMATICAE, 2015, 33 (03) :308-352
[10]   Δ-Meixner-Sobolev orthogonal polynomials: Mehler-Heine type formula and zeros [J].
Moreno-Balcazar, Juan J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 :228-234