EVALUATION OF LIDAR ODOMETRY AND MAPPING BASED ON REFERENCE LASER SCANNING

被引:3
作者
Koszyk, J. [1 ]
Labedz, P. [2 ]
Grzelka, K. [3 ]
Jasinska, A. [3 ]
Pargiela, K. [3 ]
Malczewska, A. [3 ]
Strzabala, K. [3 ]
Michalczak, M. [3 ]
Ambrozinski, L. [1 ]
机构
[1] AGH Univ Krakow, Dept Robot & Mechatron, Krakow, Poland
[2] Cracow Univ Technol, Fac Comp Sci & Telecommun, Krakow, Poland
[3] AGH Univ Krakow, Fac Geodata Sci Geodesy & Environm Engn, Krakow, Poland
来源
2ND GEOBENCH WORKSHOP ON EVALUATION AND BENCHMARKING OF SENSORS, SYSTEMS AND GEOSPATIAL DATA IN PHOTOGRAMMETRY AND REMOTE SENSING, VOL. 48-1 | 2023年
关键词
SLAM; LiDAR-SLAM; mobile robot; LeGO-LOAM; ICP;
D O I
10.5194/isprs-archives-XLVIII-1-W3-2023-79-2023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simultaneous localization and mapping (SLAM) is essential for the robot to operate in an unknown, vast environment. LiDAR-based SLAM can be utilizable in environments where other sensors cannot deliver reliable measurements. Providing accurate map results requires particular attention due to deviations originating from the device. This study is aimed to assess LiDAR-based mapping quality in a vast environment. The measurements are conducted on a mobile platform. Accuracy of the map collected with the LeGO-LOAM method was performed by making a comparison to a map gathered with geodetic scanning using ICP. The results provided 60% of fitted points in a distance lower than 5 cm and 80% in a distance lower than 10 cm. The findings prove the mileage of the map created with this method for other tasks, including autonomous driving and semantic segmentation.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
[31]   R-LOAM: Improving LiDAR Odometry and Mapping With Point-to-Mesh Features of a Known 3D Reference Object [J].
Oelsch, Martin ;
Karimi, Mojtaba ;
Steinbach, Eckehard .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :2068-2075
[32]   SR-LIVO: LiDAR-Inertial-Visual Odometry and Mapping With Sweep Reconstruction [J].
Yuan, Zikang ;
Deng, Jie ;
Ming, Ruiye ;
Lang, Fengtian ;
Yang, Xin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06) :5110-5117
[33]   Lmapping: tightly-coupled LiDAR-inertial odometry and mapping for degraded environments [J].
Zou, Jingliang ;
Shao, Liang ;
Tang, Heshen ;
Chen, Huangsong ;
Bao, Haoran ;
Pan, Xiaoming .
INTELLIGENT SERVICE ROBOTICS, 2023, 16 (05) :583-597
[34]   R-LIOM: Reflectivity-Aware LiDAR-Inertial Odometry and Mapping [J].
Dong, Yanchao ;
Li, Lingxiao ;
Xu, Sixiong ;
Li, Wenxuan ;
Li, Jinsong ;
Zhang, Yahe ;
He, Bin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11) :7743-7750
[35]   MILIOM: Tightly Coupled Multi-Input Lidar-Inertia Odometry and Mapping [J].
Nguyen, Thien-Minh ;
Yuan, Shenghai ;
Cao, Muqing ;
Lyu, Yang ;
Nguyen, Thien Hoang ;
Xie, Lihua .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) :5573-5580
[36]   VA-LOAM: Visual Assist LiDAR Odometry and Mapping for Accurate Autonomous Navigation [J].
Jung, Tae-Ki ;
Jee, Gyu-In .
SENSORS, 2024, 24 (12)
[37]   Low-Drift Odometry, Mapping and Ground Segmentation Using a Backpack LiDAR System [J].
Chen, Pengxin ;
Shi, Wenzhong ;
Bao, Sheng ;
Wang, Muyang ;
Fan, Wenzheng ;
Xiang, Haodong .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :7285-7292
[38]   A Novel Real-time Semantic-Assisted Lidar Odometry and Mapping System [J].
Wang, Fei ;
Wang, Zichen ;
Yan, Fei ;
Gu, Hong ;
Zhuang, Yan .
2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, :44-49
[39]   SROM: Simple Real-time Odometry and Mapping using LiDAR data for Autonomous [J].
Rufus, Nivedita ;
Nair, Unni Krishnan R. ;
Kumar, A. V. S. Sai Bhargav ;
Madiraju, Vashist ;
Krishna, K. Madhava .
2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, :1867-1872
[40]   LiDAR-inertial Odometry based on extended Kalman filter [J].
Akai, Naoki ;
Nakao, Takumi .
ADVANCED ROBOTICS, 2025, :357-367