共 59 条
- [1] Agostinetti N.P., Malinverno A., Receiver function inversion by transdimensional monte carlo sampling, Geophysical Journal International, 181, 2, pp. 858-872, (2010)
- [2] Aleardi M., Pierini S., Sajeva A., Assessing the performances of recent global search algorithms using analytic objective functions and seismic optimization problems, Geophysics, 84, 5, pp. R767-R781, (2019)
- [3] Aster R.C., Borchers B., Thurber C.H., Parameter Estimation and Inverse Problems, (2018)
- [4] Bai S., Kolter J.Z., Koltun V., An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, (2018)
- [5] Baker B., Gupta O., Naik N., Raskar R., Designing Neural Network Architectures Using Reinforcement Learning, (2016)
- [6] Biswas R., Sen M.K., Das V., Mukerji T., Prestack and poststack inversion using a physics-guided convolutional neural network, Interpretation, 7, 3, pp. SE161-SE174, (2019)
- [7] Bodin T., Sambridge M., Rawlinson N., Arroucau P., Transdimensional tomography with unknown data noise, Geophysical Journal International, 189, 3, pp. 1536-1556, (2012)
- [8] Brest J., Greiner S., Boskovic B., Mernik M., Zumer V., Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, IEEE Transactions on Evolutionary Computation, 10, 6, pp. 646-657, (2006)
- [9] Chen X., Xie L., Wu J., Tian Q., Progressive differentiable architecture search: Bridging the depth gap between search and evaluation, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1294-1303, (2019)
- [10] Das V., Mukerji T., Petrophysical properties prediction from prestack seismic data using convolutional neural networks, Geophysics, 85, 5, pp. N41-N55, (2020)