Enhancing carbonation and thermal insulation of reactive magnesium oxide cement (RMC)-based 3D printable pastes with cenospheres

被引:3
作者
Wang, Xiangyu [1 ]
Krishnan, Padmaja [1 ]
Celik, Kemal [1 ]
机构
[1] New York Univ Abu Dhabi, Div Engn, POB 129188, Abu Dhabi, U Arab Emirates
关键词
Reactive magnesium oxide; Hydration; Carbonation; 3D printing; Cenospheres; Low thermal conductivity; LIFE-CYCLE ASSESSMENT; FLY-ASH CENOSPHERE; FRESH PROPERTIES; MGO CONCRETE; YIELD-STRESS; REJECT BRINE; HYDRATION; PERFORMANCE; NESQUEHONITE; COMPOSITE;
D O I
10.1016/j.cemconcomp.2024.105559
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Reactive magnesium oxide cement (RMC) has been proposed as a sustainable alternative to ordinary Portland cement (OPC) due to its lower production temperature and ability to permanently sequester carbon dioxide (CO2) through carbonation. However, mixtures with only RMC can have significantly reduced CO2 absorption capacity due to limited CO2 diffusion, thereby compromising the performance of RMCs. This paper demonstrates the adoption of cenospheres, an industrial waste, as a lightweight filler in RMC-based 3D printable composites to enhance carbonation and improve thermal insulation. This work investigates the effect of incorporating different dosages of cenospheres on the rheological properties, compressive strength, thermal conductivity, and microstructural development of the RMC mixtures using X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The study reveals that substituting 30 % of RMC with cenospheres not only improves the printability and carbonation of the composite but also results in a 16 % reduction in density, achieving 1.72 g/cm3, and reduces the thermal conductivity by 59 % compared to the control without cenospheres to 0.63 W/(m & sdot;K). The findings provide valuable insights for developing lightweight 3D printable RMCbased composites.
引用
收藏
页数:17
相关论文
共 27 条
  • [11] 3D printable cement-based composites reinforced with Sisal fibers: Rheology, printability and hardened properties
    Varela, Hugo
    Tinoco, Matheus Pimentel
    Reales, Oscar Aurelio Mendoza
    Toledo, Romildo Dias Filho
    Barluenga, Gonzalo
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 450
  • [12] A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide
    Liu, Sijun
    Bastola, Anil Kumar
    Li, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (47) : 41473 - 41481
  • [13] 3D printable phase change based thermal interface material with lower total thermal resistance at operating temperature
    Hou, Lei
    Ji, Jin-Chao
    Cui, Gong-Peng
    Sun, Kai-Yin
    Lan, Hong-Bo
    Chen, Mei
    Feng, Chang Ping
    Wei, Fang
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [14] Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system
    Zhao, Zhihui
    Chen, Mingxu
    Xu, Jiabin
    Li, Laibo
    Huang, Yongbo
    Yang, Lei
    Zhao, Piqi
    Lu, Lingchao
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 284 (284)
  • [15] Development of 3D printable calcium phosphate cement based on cockle shell powder/β-TCP
    Cho, Eunbee
    Choi, Kyeongsik
    Park, Sungwan
    Seonwoo, Hoon
    TISSUE ENGINEERING PART A, 2022, 28 : 688 - 688
  • [16] A potential active rheology control approach for 3D printable cement-based materials: Coupling of temperature and viscosity modifiers
    Zhang, Yi
    Ren, Qiang
    Dai, Xiaodi
    Tao, Yaxin
    Zhang, Yiyuan
    Jiang, Zhengwu
    Van Tittelboom, Kim
    De Schutter, Geert
    CEMENT & CONCRETE COMPOSITES, 2024, 149
  • [17] The printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing
    Liu, Qiang
    Jiang, Quan
    Zhou, Zhenhua
    Xin, Jie
    Huang, Mojia
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 369
  • [18] Active Rheology Control for 3D Printable Cement-Based Materials by Temperature: An Exploratory Study
    Zhang, Yi
    Van Tittelboom, Kim
    De Schutter, Geert
    Jiang, Zhengwu
    CONSTRUCTION 3D PRINTING, 4-IC3DCP CONFERENCE 2023, 2024, : 90 - 97
  • [19] Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction
    Chiappone, Annalisa
    Roppolo, Ignazio
    Naretto, Eric
    Fantino, Erika
    Calignano, Flaviana
    Sangermano, Marco
    Pirri, Fabrizio
    COMPOSITES PART B-ENGINEERING, 2017, 124 : 9 - 15
  • [20] Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete
    Mohan, Manu K.
    Rahul, A., V
    De Schutter, Geert
    Van Tittelboom, Kim
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 275