Net Laplacian eigenvalues of certain corona-like products of signed graphs

被引:2
作者
Shamsher, Tahir [1 ]
Pirzada, S. [1 ]
Stanic, Zoran [2 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
[2] Univ Belgrade, Fac Math, Belgrade, Serbia
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 03期
关键词
Signed graph; Net Laplacian eigenvalue; Corona; Kronecker product; Controllability; SPECTRUM;
D O I
10.1007/s40590-024-00655-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The net Laplacian matrix of a signed graph Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is defined as N Gamma=D Gamma +/--A Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\Gamma }=D_{{\Gamma }}<^>{\pm }-A_{{\Gamma }}$$\end{document}, where D Gamma +/-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{{\Gamma }}<^>{\pm }$$\end{document} and A Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{{\Gamma }}$$\end{document} are the diagonal matrix of net degrees and the adjacency matrix of Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, respectively. In this paper, we introduce several corona-like products of two signed graphs, and compute the characteristic polynomial of the corresponding net Laplacian matrix either in the general case or in a case when one of constituents (or factor graphs) is regular. The corresponding net Laplacian eigenvalues are explicitly computed under an additional assumption requiring particular signature for one constituent. For a real vector b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{b}$$\end{document}, the pair (N Gamma,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N_\Gamma , \textbf{b})$$\end{document} is controllable if N Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_\Gamma $$\end{document} has no eigenvector orthogonal to b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{b}$$\end{document}. As an application of the obtained results, we give necessary and sufficient conditions for the controllability of each product, again either in the general case or a particular case imposing regularity and/or particular signature.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Corona product of signed graphs and its application to modeling signed networks [J].
Adhikari, Bibhas ;
Singh, Amrik ;
Yadav, Sandeep Kumar .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
[2]  
Aref S., 2019, Doctoral Thesis
[3]   The spectrum of the corona of two graphs [J].
Barik, S. ;
Pati, S. ;
Sarma, B. K. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :47-56
[4]   Spectra of graphs resulting from various graph operations and products: a survey [J].
Barik, S. ;
Kalita, D. ;
Pati, S. ;
Sahoo, G. .
SPECIAL MATRICES, 2018, 6 (01) :323-342
[5]  
Belardo F., 2018, Art Discrete Appl. Math., V1, P10
[6]   Total graph of a signed graph [J].
Belardo, Francesco ;
Stanic, Zoran ;
Zaslavsky, Thomas .
ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
[7]   On the Laplacian coefficients of signed graphs [J].
Belardo, Francesco ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 :94-113
[8]   The spectrum and the signless Laplacian spectrum of coronae [J].
Cui, Shu-Yu ;
Tian, Gui-Xian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) :1692-1703
[9]  
Cvetkovi D., 1995, Spectra of graphs, V3
[10]  
Frucht R., 1970, AEQUATIONES MATH, V4, P322, DOI DOI 10.1007/BF01844162