Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes

被引:5
作者
Cifuente, Javier O. [1 ]
Colleoni, Christophe [3 ]
Kalscheuer, Rainer [4 ]
Guerin, Marcelo E. [2 ]
机构
[1] Univ Basque Country, CSIC, Inst Biofis, UPV EHU, E-48940 Leioa, Spain
[2] CSIC, Struct Glycobiol Lab, Dept Struct & Mol Biol, Mol Biol Inst Barcelona IBMB, Barcelona 08028, Catalonia, Spain
[3] Univ Lille, CNRS, UGSF, SCALab,UMR8576, F-59000 Lille, France
[4] Heinrich Heine Univ, Inst Pharmaceut Biol & Biotechnol, D-40225 Dusseldorf, Germany
基金
美国国家卫生研究院;
关键词
ADENOSINE-DIPHOSPHATE GLUCOSE; CYANOBACTERIAL SUCROSE-PHOSPHATASE; COLI MALTODEXTRIN PHOSPHORYLASE; SEQUENCE-BASED CLASSIFICATION; GLYCOGEN BRANCHING ENZYME; TREHALOSE SYNTHASE TRES; DE-NOVO SYNTHESIS; B ADP-GLUCOSE; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE;
D O I
10.1021/acs.chemrev.3c00811
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. alpha-D-Glucose homopolysaccharides, so-called alpha-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted alpha-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular alpha-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular alpha-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate alpha-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of alpha-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving alpha-glucan bacterial metabolism.
引用
收藏
页码:4863 / 4934
页数:72
相关论文
共 674 条
[1]   The X-ray crystallographic structure of Escherichia coli branching enzyme [J].
Abad, MC ;
Binderup, K ;
Rios-Steiner, J ;
Arni, RK ;
Preiss, J ;
Geiger, JH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (44) :42164-42170
[2]   THE REPEATING UNIT OF GLYCOGEN [J].
ABDELAKHER, M ;
SMITH, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (03) :994-996
[3]   Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase [J].
Albenne, C ;
Skov, LK ;
Mirza, O ;
Gajhede, M ;
Feller, G ;
D'Amico, S ;
André, G ;
Potocki-Véronèse, G ;
van der Veen, BA ;
Monsan, P ;
Remaud-Simeon, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (01) :726-734
[4]   Structural Snapshots of α-1,3-Galactosyltransferase with Native Substrates: Insight into the Catalytic Mechanism of Retaining Glycosyltransferases [J].
Albesa-Jove, David ;
Angela Sainz-Polo, M. ;
Marina, Alberto ;
Guerin, Marcelo E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (47) :14853-14857
[5]   The conformational plasticity of glycosyltransferases [J].
Albesa-Jove, David ;
Guerin, Marcelo E. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2016, 40 :23-32
[6]   A Native Ternary Complex Trapped in a Crystal Reveals the Catalytic Mechanism of a Retaining Glycosyltransferase [J].
Albesa-Jove, David ;
Mendoza, Fernanda ;
Rodrigo-Unzueta, Ane ;
Gomollon-Bel, Fernando ;
Cifuente, Javier O. ;
Urresti, Saioa ;
Comino, Natalia ;
Gomez, Hansel ;
Romero-Garcia, Javier ;
Lluch, Jose M. ;
Sancho-Vaello, Enea ;
Biarnes, Xevi ;
Planas, Antoni ;
Merino, Pedro ;
Masgrau, Laura ;
Guerin, Marcelo E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (34) :9898-9902
[7]   Structure-function relationships of membrane-associated GT-B glycosyltransferases [J].
Albesa-Jove, David ;
Giganti, David ;
Jackson, Mary ;
Alzari, Pedro M. ;
Guerin, Marcelo E. .
GLYCOBIOLOGY, 2014, 24 (02) :108-124
[8]   Site-directed mutagenesis of Serine-72 reveals the location of the fructose 6-phosphate regulatory site of the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase [J].
Alghamdi, Mashael A. ;
Hussien, Rania A. ;
Zheng, Yuanzhang ;
Patel, Hiral P. ;
Asencion Diez, Matias D. ;
Iglesias, Alberto A. ;
Liu, Dali ;
Ballicora, Miguel A. .
PROTEIN SCIENCE, 2022, 31 (07)
[9]   A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters [J].
Almagro, Goizeder ;
Viale, Alejandro M. ;
Montero, Manuel ;
Jose Munoz, Francisco ;
Baroja-Fernandez, Edurne ;
Mori, Hirotada ;
Pozueta-Romero, Javier .
SCIENTIFIC REPORTS, 2018, 8
[10]   Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli [J].
Alonso-Casajus, Nora ;
Dauvillee, David ;
Viale, Alejandro Miguel ;
Munoz, Francisco Jose ;
Baroja-Fernandez, Edurne ;
Moran-Zorzano, Maria Teresa ;
Eydallin, Gustavo ;
Ball, Steven ;
Pozueta-Romero, Javier .
JOURNAL OF BACTERIOLOGY, 2006, 188 (14) :5266-5272