The thermodynamical characteristics of SrNbO3 (SNO) are calculated utilizing the Quasi-Harmonic model (QHM). The model utilizes total energy estimates based on the Generalized Gradient Approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) level scheme framework. The current research is conducted by utilizing the Gibbs2 codes in conjunction with the WIEN2k density functional theory (DFT) software. Our previous studies demonstrate that SNO compounds have good conductivity as well as show optical transparency. Therefore, to fully comprehend SrNbO3, thermodynamical characteristics (thermal expansion, specific heat capacities, etc. within practical pressure (0GPa ~ 20GPa), and temperatures (0 K ~ 1000 K) limit) have been further examined. Around room temperature, the thermodynamical parameters are found to be: CV =104.482 J/mol K, and thermal expansion α (at 0GPa) = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\:3.5\times\:\:{10}^{-5}/\text{K}$$\end{document} while\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\:\:2.2\times\:\:{10}^{-5}/K$$\end{document} at 20GPa through DFT calculation. Through meticulous control of key thermodynamic parameters such as internal energy, entropy, Debye temperature, Gibbs free energy, and Helmholtz free energy, we can contribute to the improvement and durability of sensors, solar cells, and electrical devices. This allows us to predict the stability and responsiveness of transition metal oxides (TMOs).