Thermo-dynamical attributes of transparent conducting SrNbO3 under quasi-harmonic model: first principle approach

被引:0
|
作者
Patel Maneshwar Rai [1 ]
Rakesh Kumar [1 ]
Arun Kumar Singh [2 ]
Ankita Srivastava [1 ]
Nitesh K. Chourasia [2 ]
Ritesh Kumar Chourasia [3 ]
机构
[1] L.N.M.U,University Department of Physics
[2] Samastipur College (A Constituent Unit of L.N.M.U. Darbhanga-846004,Post
[3] Bihar),Graduate Department of Physics
[4] SGT University,Department of Physics, Faculty of Applied and Basic Sciences
关键词
Perovskites; WIEN2k; Gibbs2; Density functional theory; GGA-PBE; Thermodynamic;
D O I
10.1007/s10751-024-02001-0
中图分类号
学科分类号
摘要
The thermodynamical characteristics of SrNbO3 (SNO) are calculated utilizing the Quasi-Harmonic model (QHM). The model utilizes total energy estimates based on the Generalized Gradient Approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) level scheme framework. The current research is conducted by utilizing the Gibbs2 codes in conjunction with the WIEN2k density functional theory (DFT) software. Our previous studies demonstrate that SNO compounds have good conductivity as well as show optical transparency. Therefore, to fully comprehend SrNbO3, thermodynamical characteristics (thermal expansion, specific heat capacities, etc. within practical pressure (0GPa ~ 20GPa), and temperatures (0 K ~ 1000 K) limit) have been further examined. Around room temperature, the thermodynamical parameters are found to be: CV =104.482 J/mol K, and thermal expansion α (at 0GPa) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:3.5\times\:\:{10}^{-5}/\text{K}$$\end{document} while\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\:2.2\times\:\:{10}^{-5}/K$$\end{document} at 20GPa through DFT calculation. Through meticulous control of key thermodynamic parameters such as internal energy, entropy, Debye temperature, Gibbs free energy, and Helmholtz free energy, we can contribute to the improvement and durability of sensors, solar cells, and electrical devices. This allows us to predict the stability and responsiveness of transition metal oxides (TMOs).
引用
收藏
相关论文
共 4 条